REGR: ValueError: cannot convert float NaN to integer - on dataframe.reset_index() in pandas 1.1.0 · Issue #35606 · pandas-dev/pandas (original) (raw)
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- (optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
from pandas.core.dtypes.cast import construct_1d_arraylike_from_scalar from pandas.core.dtypes.missing import na_value_for_dtype import numpy as np
dtype = np.datetime64().dtype length = 10 works_value = np.NaN fails_value = na_value_for_dtype(dtype)
works
construct_1d_arraylike_from_scalar(works_value, length, dtype)
fails
construct_1d_arraylike_from_scalar(fails_value, length, dtype)
Results in:
Traceback (most recent call last):
File "<input>", line 1, in <module>
construct_1d_arraylike_from_scalar(value, length, dtype)
File "/usr/lib/python3.8/site-packages/pandas/core/dtypes/cast.py", line 1453, in construct_1d_arraylike_from_scalar
subarr.fill(value)
ValueError: cannot convert float NaN to integer
Problem description
This is a problem was found when calling reset_index
on a MultiIndex Dataframe with an index containing datetime information. The expected behaviour would be that it would return an array of NaTs, which ironically only happens if you pass it np.NaN
.
I'm not familiar with the source code of numpy, so I can only speculate on how to fix it, but I would assume we would need special handling for time values, so we fill time arrays with np.NaN
s instead of pandas._libs.tslibs.nattype.NaTType
s.
Expected Output
array(['NaT', 'NaT', 'NaT', 'NaT', 'NaT', 'NaT', 'NaT', 'NaT', 'NaT', 'NaT'], dtype=datetime64)
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.8.3.final.0
python-bits : 64
OS : Linux
OS-release : 5.7.9-1-MANJARO
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8
pandas : 1.0.5
numpy : 1.19.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 49.2.0
Cython : 0.29.21
pytest : 5.4.3
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.5.2
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.16.1
pandas_datareader: 0.10.0dev0
bs4 : 4.9.1
bottleneck : 1.3.2
fastparquet : None
gcsfs : None
lxml.etree : 4.5.2
matplotlib : 3.3.0
numexpr : 2.7.1
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 5.4.3
pyxlsb : None
s3fs : None
scipy : 1.5.1
sqlalchemy : 1.3.17
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None