BUG: TypeError: '<' not supported between instances of 'float' and 'str' when using .combine_first with categorical index containing nan (original) (raw)


Code Sample, a copy-pastable example

In [79]: x = ['b', 'b', 'c', 'a', 'b', np.nan] ...: y = ['a', 'b', 'c', 'a', 'b', 'd'] ...: mi1 = pd.MultiIndex.from_arrays( ...: [x, [1, 2, 3, 4, 5, 6]], ...: names=['a', 'b'] ...: ) ...: df = pd.DataFrame({'c': [1, 1, 1, 1, 1, 1]}, index=mi1) ...: mi2 = pd.MultiIndex.from_arrays( ...: [y, [1, 1, 1, 1, 1, 1]], ...: names=['a', 'b'] ...: ) ...: s = pd.Series([1, 2, 3, 4, 5, 6], index=mi2) ...: df.combine_first(pd.DataFrame({'some_col': s}))

TypeError Traceback (most recent call last) ~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/algorithms.py in safe_sort(values, codes, na_sentinel, assume_unique, verify) 2060 try: -> 2061 sorter = values.argsort() 2062 ordered = values.take(sorter)

TypeError: '<' not supported between instances of 'float' and 'str'

During handling of the above exception, another exception occurred:

TypeError Traceback (most recent call last) in 11 ) 12 s = pd.Series([1, 2, 3, 4, 5, 6], index=mi2) ---> 13 df.combine_first(pd.DataFrame({'some_col': s}))

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/frame.py in combine_first(self, other) 6239 return expressions.where(mask, y_values, x_values) 6240 -> 6241 return self.combine(other, combiner, overwrite=False) 6242 6243 def update(

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/frame.py in combine(self, other, func, fill_value, overwrite) 6104 other_idxlen = len(other.index) # save for compare 6105 -> 6106 this, other = self.align(other, copy=False) 6107 new_index = this.index 6108

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/frame.py in align(self, other, join, axis, level, copy, fill_value, method, limit, fill_axis, broadcast_axis) 3955 broadcast_axis=None, 3956 ) -> "DataFrame": -> 3957 return super().align( 3958 other, 3959 join=join,

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/generic.py in align(self, other, join, axis, level, copy, fill_value, method, limit, fill_axis, broadcast_axis) 8542 axis = self._get_axis_number(axis) 8543 if isinstance(other, ABCDataFrame): -> 8544 return self._align_frame( 8545 other, 8546 join=join,

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/generic.py in _align_frame(self, other, join, axis, level, copy, fill_value, method, limit, fill_axis) 8589 if axis is None or axis == 0: 8590 if not self.index.equals(other.index): -> 8591 join_index, ilidx, iridx = self.index.join( 8592 other.index, how=join, level=level, return_indexers=True 8593 )

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/indexes/base.py in join(self, other, how, level, return_indexers, sort) 3491 ) 3492 else: -> 3493 return self._join_non_unique( 3494 other, how=how, return_indexers=return_indexers 3495 )

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/indexes/base.py in _join_non_unique(self, other, how, return_indexers) 3618 rvalues = other._get_engine_target() 3619 -> 3620 left_idx, right_idx = _get_join_indexers( 3621 [lvalues], [rvalues], how=how, sort=True 3622 )

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/reshape/merge.py in _get_join_indexers(left_keys, right_keys, sort, how, **kwargs) 1326 for n in range(len(left_keys)) 1327 ) -> 1328 zipped = zip(*mapped) 1329 llab, rlab, shape = [list(x) for x in zipped] 1330

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/reshape/merge.py in (.0) 1323 # get left & right join labels and num. of levels at each location 1324 mapped = ( -> 1325 _factorize_keys(left_keys[n], right_keys[n], sort=sort, how=how) 1326 for n in range(len(left_keys)) 1327 )

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/reshape/merge.py in _factorize_keys(lk, rk, sort, how) 1978 if sort: 1979 uniques = rizer.uniques.to_array() -> 1980 llab, rlab = _sort_labels(uniques, llab, rlab) 1981 1982 # NA group

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/reshape/merge.py in _sort_labels(uniques, left, right) 2003 labels = np.concatenate([left, right]) 2004 -> 2005 _, new_labels = algos.safe_sort(uniques, labels, na_sentinel=-1) 2006 new_labels = ensure_int64(new_labels) 2007 new_left, new_right = new_labels[:llength], new_labels[llength:]

~/envs/pandas-test/lib/python3.8/site-packages/pandas/core/algorithms.py in safe_sort(values, codes, na_sentinel, assume_unique, verify) 2063 except TypeError: 2064 # try this anyway -> 2065 ordered = sort_mixed(values) 2066 2067 # codes:

/envs/pandas-test/lib/python3.8/site-packages/pandas/core/algorithms.py in sort_mixed(values) 2046 # order ints before strings, safe in py3 2047 str_pos = np.array([isinstance(x, str) for x in values], dtype=bool) -> 2048 nums = np.sort(values[str_pos]) 2049 strs = np.sort(values[str_pos]) 2050 return np.concatenate([nums, np.asarray(strs, dtype=object)])

<__array_function__ internals> in sort(*args, **kwargs)

~/envs/pandas-test/lib/python3.8/site-packages/numpy/core/fromnumeric.py in sort(a, axis, kind, order) 989 else: 990 a = asanyarray(a).copy(order="K") --> 991 a.sort(axis=axis, kind=kind, order=order) 992 return a 993

TypeError: '<' not supported between instances of 'float' and 'str'

Problem description

I use df.combine_first(...) to add a column to a dataframe while extending the index in case an index value does not exist in the target dataframe. However, if the MultIindex of the dataframe/series contains mixed np.nan/str values in their index value, the above TypeError is raised. I originally noticed this for categorical types (x and y), but the problem can be simplified to plain string types.

The reproduction of this error also seems to depend on the length/order of x and y (I tried to reduce it to fewer elements and kept the np.nan, but that didn't reproduce the error).

Expected Output

No exception and the dataframe containing the new column of series.

Output of pd.show_versions()

Details

In [84]: pd.show_versions()

INSTALLED VERSIONS

commit : 2a7d332
python : 3.8.5.final.0
python-bits : 64
OS : Darwin
OS-release : 19.6.0
Version : Darwin Kernel Version 19.6.0: Thu Jun 18 20:49:00 PDT 2020; root:xnu-6153.141.1~1/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_AU.UTF-8
LOCALE : en_AU.UTF-8

pandas : 1.1.2
numpy : 1.19.2
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 46.4.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.18.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None