REF: Remove rolling window fixed algorithms by mroeschke · Pull Request #36567 · pandas-dev/pandas (original) (raw)

       before           after         ratio
     [d9722efe]       [198ab9e8]
     <clean/rolling_aggregations^2>       <clean/rolling_aggregations>
+     1.27±0.02ms         4.05±1ms     3.19  rolling.Quantile.time_quantile('Series', 10, 'float', 1, 'linear')
+     1.27±0.01ms       3.67±0.7ms     2.88  rolling.Quantile.time_quantile('Series', 10, 'float', 1, 'nearest')
+     1.27±0.01ms       3.22±0.3ms     2.54  rolling.Quantile.time_quantile('Series', 10, 'float', 1, 'higher')
+     1.27±0.01ms      2.99±0.08ms     2.36  rolling.Quantile.time_quantile('Series', 10, 'float', 1, 'midpoint')
+        1.29±0ms      2.92±0.01ms     2.26  rolling.Quantile.time_quantile('Series', 10, 'float', 0, 'nearest')
+        1.29±0ms      2.91±0.01ms     2.26  rolling.Quantile.time_quantile('Series', 10, 'float', 0, 'midpoint')
+     1.29±0.08ms      2.91±0.01ms     2.25  rolling.Methods.time_rolling('Series', 10, 'float', 'max')
+     1.29±0.01ms         2.91±0ms     2.25  rolling.Quantile.time_quantile('Series', 10, 'float', 0, 'higher')
+     1.29±0.01ms      2.90±0.02ms     2.24  rolling.Quantile.time_quantile('Series', 10, 'float', 0, 'linear')
+     1.30±0.02ms      2.91±0.04ms     2.24  rolling.Quantile.time_quantile('Series', 10, 'float', 0, 'lower')
+     1.30±0.03ms      2.90±0.01ms     2.23  rolling.Quantile.time_quantile('Series', 10, 'float', 1, 'lower')
+     1.32±0.08ms      2.93±0.02ms     2.22  rolling.Methods.time_rolling('Series', 10, 'float', 'min')
+     1.33±0.03ms         2.95±0ms     2.21  rolling.Methods.time_rolling('Series', 10, 'int', 'max')
+     1.44±0.01ms      3.11±0.03ms     2.16  rolling.Quantile.time_quantile('DataFrame', 10, 'float', 1, 'lower')
+     1.37±0.05ms      2.96±0.01ms     2.16  rolling.Methods.time_rolling('Series', 10, 'int', 'min')
+     1.44±0.01ms      3.10±0.02ms     2.15  rolling.Quantile.time_quantile('DataFrame', 10, 'float', 1, 'midpoint')
+     1.44±0.01ms      3.07±0.01ms     2.14  rolling.Quantile.time_quantile('DataFrame', 10, 'float', 1, 'higher')
+        1.44±0ms      3.08±0.01ms     2.14  rolling.Quantile.time_quantile('DataFrame', 10, 'float', 1, 'nearest')
+     1.45±0.01ms      3.07±0.01ms     2.13  rolling.Methods.time_rolling('DataFrame', 10, 'float', 'max')
+     1.46±0.01ms      3.07±0.01ms     2.10  rolling.Quantile.time_quantile('DataFrame', 10, 'float', 1, 'linear')
+        1.47±0ms      3.09±0.02ms     2.10  rolling.Quantile.time_quantile('DataFrame', 10, 'float', 0, 'linear')
+     1.48±0.02ms      3.10±0.02ms     2.10  rolling.Quantile.time_quantile('DataFrame', 10, 'float', 0, 'higher')
+        1.47±0ms         3.08±0ms     2.09  rolling.Methods.time_rolling('DataFrame', 10, 'float', 'min')
+     1.47±0.01ms      3.07±0.01ms     2.09  rolling.Quantile.time_quantile('DataFrame', 10, 'float', 0, 'midpoint')
+      1.48±0.2ms      3.10±0.02ms     2.09  rolling.Quantile.time_quantile('DataFrame', 10, 'float', 0, 'nearest')
+     1.47±0.04ms      3.05±0.02ms     2.08  rolling.Quantile.time_quantile('Series', 1000, 'float', 1, 'linear')
+     1.52±0.01ms      3.15±0.02ms     2.07  rolling.Methods.time_rolling('DataFrame', 10, 'int', 'max')
+     1.54±0.01ms      3.17±0.03ms     2.06  rolling.Methods.time_rolling('DataFrame', 10, 'int', 'min')
+        1.49±0ms      3.05±0.06ms     2.04  rolling.Quantile.time_quantile('Series', 1000, 'float', 1, 'nearest')
+        1.49±0ms      3.03±0.03ms     2.03  rolling.Quantile.time_quantile('Series', 1000, 'float', 1, 'lower')
+        1.49±0ms      2.98±0.03ms     1.99  rolling.Quantile.time_quantile('Series', 1000, 'float', 1, 'midpoint')
+     1.40±0.01ms      2.75±0.01ms     1.97  rolling.ExpandingMethods.time_expanding('Series', 'float', 'max')
+        1.49±0ms      2.93±0.02ms     1.96  rolling.Quantile.time_quantile('Series', 1000, 'float', 1, 'higher')
+     1.44±0.01ms      2.81±0.02ms     1.96  rolling.ExpandingMethods.time_expanding('Series', 'int', 'max')
+      1.59±0.2ms      3.11±0.03ms     1.95  rolling.Quantile.time_quantile('DataFrame', 10, 'float', 0, 'lower')
+         930±3μs      1.80±0.01ms     1.94  rolling.Quantile.time_quantile('Series', 10, 'int', 0, 'higher')
+        1.52±0ms      2.94±0.02ms     1.93  rolling.Quantile.time_quantile('Series', 1000, 'float', 0, 'linear')
+      1.51±0.2ms      2.92±0.01ms     1.93  rolling.Methods.time_rolling('Series', 1000, 'float', 'max')
+         933±4μs      1.80±0.01ms     1.93  rolling.Quantile.time_quantile('Series', 10, 'int', 0, 'nearest')
+         931±4μs      1.79±0.01ms     1.93  rolling.Quantile.time_quantile('Series', 10, 'int', 1, 'nearest')
+     1.69±0.01ms      3.26±0.01ms     1.93  rolling.Quantile.time_quantile('DataFrame', 1000, 'float', 1, 'linear')
+         933±4μs      1.80±0.01ms     1.93  rolling.Quantile.time_quantile('Series', 10, 'int', 0, 'midpoint')
+      1.52±0.2ms      2.93±0.01ms     1.93  rolling.Methods.time_rolling('Series', 1000, 'float', 'min')
+        937±10μs      1.80±0.01ms     1.92  rolling.Quantile.time_quantile('Series', 10, 'int', 0, 'lower')
+        1.56±0ms      2.99±0.05ms     1.92  rolling.ExpandingMethods.time_expanding('DataFrame', 'float', 'max')
+        940±30μs      1.80±0.01ms     1.91  rolling.Quantile.time_quantile('Series', 10, 'int', 1, 'midpoint')
+     1.56±0.02ms      2.98±0.01ms     1.91  rolling.Methods.time_rolling('Series', 1000, 'int', 'max')
+         935±3μs      1.79±0.01ms     1.91  rolling.Quantile.time_quantile('Series', 10, 'int', 1, 'higher')
+         934±7μs      1.78±0.01ms     1.91  rolling.Quantile.time_quantile('Series', 10, 'int', 0, 'linear')
+         931±3μs      1.78±0.01ms     1.91  rolling.Quantile.time_quantile('Series', 10, 'int', 1, 'lower')
+     1.45±0.01ms         2.76±0ms     1.91  rolling.ExpandingMethods.time_expanding('Series', 'float', 'min')
+        1.63±0ms      3.11±0.01ms     1.90  rolling.Quantile.time_quantile('DataFrame', 1000, 'float', 0, 'nearest')
+         937±4μs      1.78±0.01ms     1.90  rolling.Quantile.time_quantile('Series', 10, 'int', 1, 'linear')
+         961±2μs      1.82±0.04ms     1.90  rolling.Quantile.time_quantile('Series', 1000, 'int', 0, 'midpoint')
+     1.49±0.02ms      2.82±0.01ms     1.89  rolling.ExpandingMethods.time_expanding('Series', 'int', 'min')
+         964±9μs      1.82±0.02ms     1.88  rolling.Quantile.time_quantile('Series', 1000, 'int', 0, 'nearest')
+         963±7μs      1.81±0.05ms     1.88  rolling.Quantile.time_quantile('Series', 1000, 'int', 0, 'linear')
+         962±8μs      1.81±0.01ms     1.88  rolling.Quantile.time_quantile('Series', 1000, 'int', 0, 'higher')
+         967±3μs      1.81±0.01ms     1.88  rolling.Quantile.time_quantile('Series', 1000, 'int', 0, 'lower')
+         966±3μs      1.81±0.02ms     1.87  rolling.Quantile.time_quantile('Series', 1000, 'int', 1, 'linear')
+         964±1μs      1.80±0.02ms     1.87  rolling.Quantile.time_quantile('Series', 1000, 'int', 1, 'nearest')
+     1.66±0.03ms      3.10±0.01ms     1.87  rolling.Quantile.time_quantile('DataFrame', 1000, 'float', 1, 'nearest')
+         964±4μs         1.80±0ms     1.87  rolling.Quantile.time_quantile('Series', 1000, 'int', 1, 'higher')
+        1.12±0ms      2.08±0.01ms     1.87  rolling.Quantile.time_quantile('DataFrame', 10, 'int', 1, 'nearest')
+     1.67±0.01ms      3.10±0.01ms     1.86  rolling.Quantile.time_quantile('DataFrame', 1000, 'float', 1, 'midpoint')
+     1.63±0.02ms      3.02±0.03ms     1.86  rolling.ExpandingMethods.time_expanding('DataFrame', 'int', 'max')
+     1.68±0.01ms      3.11±0.01ms     1.86  rolling.Quantile.time_quantile('DataFrame', 1000, 'float', 1, 'lower')
+         969±3μs      1.80±0.02ms     1.85  rolling.Quantile.time_quantile('Series', 1000, 'int', 1, 'midpoint')
+     1.68±0.01ms      3.11±0.02ms     1.85  rolling.Quantile.time_quantile('DataFrame', 1000, 'float', 1, 'higher')
+     1.61±0.09ms      2.97±0.01ms     1.85  rolling.Methods.time_rolling('Series', 1000, 'int', 'min')
+         970±7μs      1.79±0.01ms     1.84  rolling.Quantile.time_quantile('Series', 1000, 'int', 1, 'lower')
+     1.72±0.01ms       3.16±0.1ms     1.84  rolling.Quantile.time_quantile('DataFrame', 1000, 'float', 0, 'linear')
+     1.71±0.02ms      3.16±0.07ms     1.84  rolling.Methods.time_rolling('DataFrame', 1000, 'int', 'max')
+     1.70±0.08ms      3.13±0.02ms     1.84  rolling.Methods.time_rolling('DataFrame', 1000, 'float', 'min')
+     1.70±0.07ms      3.11±0.01ms     1.83  rolling.Quantile.time_quantile('DataFrame', 1000, 'float', 0, 'lower')
+     1.71±0.01ms      3.13±0.02ms     1.83  rolling.Quantile.time_quantile('DataFrame', 1000, 'float', 0, 'higher')
+     1.65±0.01ms      3.00±0.02ms     1.82  rolling.ExpandingMethods.time_expanding('DataFrame', 'int', 'min')
+     1.15±0.01ms      2.09±0.01ms     1.82  rolling.Quantile.time_quantile('DataFrame', 1000, 'int', 1, 'linear')
+     1.71±0.02ms      3.11±0.01ms     1.82  rolling.Methods.time_rolling('DataFrame', 1000, 'float', 'max')
+        1.71±0ms      3.11±0.01ms     1.82  rolling.Quantile.time_quantile('DataFrame', 1000, 'float', 0, 'midpoint')
+     1.62±0.01ms      2.94±0.03ms     1.82  rolling.ExpandingMethods.time_expanding('DataFrame', 'float', 'min')
+        1.12±0ms      2.02±0.05ms     1.80  rolling.Quantile.time_quantile('DataFrame', 10, 'int', 1, 'higher')
+     1.76±0.08ms      3.15±0.01ms     1.80  rolling.Methods.time_rolling('DataFrame', 1000, 'int', 'min')
+     1.12±0.01ms      1.99±0.03ms     1.78  rolling.Quantile.time_quantile('DataFrame', 10, 'int', 0, 'nearest')
+     1.12±0.01ms      1.99±0.02ms     1.78  rolling.Quantile.time_quantile('DataFrame', 10, 'int', 1, 'lower')
+        1.14±0ms      2.03±0.03ms     1.78  rolling.Quantile.time_quantile('DataFrame', 1000, 'int', 0, 'higher')
+        1.12±0ms      1.99±0.01ms     1.78  rolling.Quantile.time_quantile('DataFrame', 10, 'int', 0, 'higher')
+        1.15±0ms      2.03±0.05ms     1.77  rolling.Quantile.time_quantile('DataFrame', 1000, 'int', 0, 'linear')
+     1.13±0.01ms      2.00±0.05ms     1.77  rolling.Quantile.time_quantile('DataFrame', 1000, 'int', 0, 'nearest')
+        1.12±0ms      1.98±0.04ms     1.77  rolling.Quantile.time_quantile('DataFrame', 10, 'int', 0, 'lower')
+        1.12±0ms      1.97±0.01ms     1.76  rolling.Quantile.time_quantile('DataFrame', 10, 'int', 1, 'midpoint')
+     1.13±0.01ms      1.99±0.01ms     1.76  rolling.Quantile.time_quantile('DataFrame', 10, 'int', 0, 'midpoint')
+        1.12±0ms      1.97±0.01ms     1.76  rolling.Quantile.time_quantile('DataFrame', 10, 'int', 1, 'linear')
+     1.14±0.01ms      1.98±0.01ms     1.74  rolling.Quantile.time_quantile('DataFrame', 1000, 'int', 1, 'midpoint')
+     1.14±0.02ms         1.97±0ms     1.74  rolling.Quantile.time_quantile('DataFrame', 1000, 'int', 0, 'lower')
+     1.14±0.01ms         1.97±0ms     1.73  rolling.Quantile.time_quantile('DataFrame', 1000, 'int', 1, 'higher')
+     1.14±0.01ms      1.97±0.01ms     1.73  rolling.Quantile.time_quantile('DataFrame', 1000, 'int', 0, 'midpoint')
+        1.14±0ms      1.97±0.01ms     1.72  rolling.Quantile.time_quantile('DataFrame', 1000, 'int', 1, 'nearest')
+     1.14±0.01ms      1.97±0.01ms     1.72  rolling.Quantile.time_quantile('DataFrame', 1000, 'int', 1, 'lower')
+     1.46±0.07ms      2.48±0.01ms     1.70  rolling.Methods.time_rolling('Series', 10, 'float', 'std')
+     1.21±0.09ms      2.00±0.02ms     1.66  rolling.Quantile.time_quantile('DataFrame', 10, 'int', 0, 'linear')
+     1.54±0.03ms      2.54±0.01ms     1.65  rolling.Methods.time_rolling('Series', 1000, 'int', 'std')
+     1.62±0.04ms      2.66±0.01ms     1.65  rolling.Methods.time_rolling('DataFrame', 10, 'float', 'std')
+     1.68±0.01ms      2.75±0.02ms     1.64  rolling.Methods.time_rolling('DataFrame', 10, 'int', 'std')
+      1.56±0.1ms      2.53±0.01ms     1.63  rolling.Methods.time_rolling('Series', 10, 'int', 'std')
+     1.66±0.03ms      2.67±0.01ms     1.61  rolling.Methods.time_rolling('DataFrame', 1000, 'float', 'std')
+     1.71±0.03ms      2.73±0.01ms     1.59  rolling.Methods.time_rolling('DataFrame', 1000, 'int', 'std')
+        913±40μs         1.42±0ms     1.56  rolling.Methods.time_rolling('Series', 10, 'float', 'mean')
+      1.62±0.2ms      2.49±0.01ms     1.54  rolling.Methods.time_rolling('Series', 1000, 'float', 'std')
+       933±100μs      1.43±0.01ms     1.53  rolling.Methods.time_rolling('Series', 1000, 'float', 'mean')
+        980±30μs      1.48±0.01ms     1.51  rolling.Methods.time_rolling('Series', 10, 'int', 'mean')
+     1.07±0.01ms      1.60±0.01ms     1.50  rolling.Methods.time_rolling('DataFrame', 10, 'float', 'mean')
+        985±60μs      1.47±0.01ms     1.50  rolling.Methods.time_rolling('Series', 1000, 'int', 'mean')
+        1.21±0ms      1.81±0.01ms     1.49  rolling.ExpandingMethods.time_expanding('Series', 'float', 'kurt')
+        1.43±0ms      2.11±0.01ms     1.47  rolling.Methods.time_rolling('Series', 1000, 'int', 'kurt')
+        1.14±0ms      1.68±0.01ms     1.47  rolling.Methods.time_rolling('DataFrame', 1000, 'int', 'mean')
+        1.26±0ms         1.86±0ms     1.47  rolling.ExpandingMethods.time_expanding('Series', 'int', 'kurt')
+     1.40±0.08ms      2.06±0.01ms     1.47  rolling.Methods.time_rolling('Series', 10, 'float', 'kurt')
+     1.14±0.01ms         1.67±0ms     1.46  rolling.Methods.time_rolling('DataFrame', 10, 'int', 'mean')
+     1.12±0.01ms      1.63±0.01ms     1.45  rolling.Methods.time_rolling('DataFrame', 1000, 'float', 'mean')
+     1.55±0.01ms      2.24±0.01ms     1.44  rolling.Methods.time_rolling('DataFrame', 10, 'float', 'kurt')
+         846±4μs         1.22±0ms     1.44  rolling.ExpandingMethods.time_expanding('Series', 'float', 'mean')
+     1.38±0.01ms      1.98±0.01ms     1.43  rolling.ExpandingMethods.time_expanding('DataFrame', 'float', 'kurt')
+        1.62±0ms      2.30±0.01ms     1.42  rolling.Methods.time_rolling('DataFrame', 10, 'int', 'kurt')
+     1.27±0.02ms      1.80±0.02ms     1.41  rolling.Methods.time_rolling('Series', 10, 'float', 'skew')
+     1.57±0.02ms      2.22±0.06ms     1.41  rolling.Methods.time_rolling('DataFrame', 1000, 'float', 'kurt')
+     1.32±0.08ms      1.86±0.01ms     1.41  rolling.Methods.time_rolling('Series', 10, 'int', 'skew')
+     1.44±0.01ms      2.03±0.01ms     1.41  rolling.ExpandingMethods.time_expanding('DataFrame', 'int', 'kurt')
+         895±3μs         1.26±0ms     1.40  rolling.ExpandingMethods.time_expanding('Series', 'int', 'mean')
+     1.32±0.06ms         1.84±0ms     1.40  rolling.Methods.time_rolling('Series', 1000, 'int', 'skew')
+     1.64±0.04ms      2.29±0.01ms     1.40  rolling.Methods.time_rolling('DataFrame', 1000, 'int', 'kurt')
+     1.42±0.01ms         1.97±0ms     1.39  rolling.Methods.time_rolling('DataFrame', 10, 'float', 'skew')
+        900±50μs      1.25±0.02ms     1.38  rolling.Methods.time_rolling('Series', 10, 'float', 'sum')
+     2.12±0.07ms      2.92±0.01ms     1.38  rolling.Quantile.time_quantile('Series', 1000, 'float', 0, 'lower')
+     1.49±0.01ms         2.04±0ms     1.37  rolling.Methods.time_rolling('DataFrame', 10, 'int', 'skew')
+     1.45±0.04ms      1.98±0.03ms     1.37  rolling.Methods.time_rolling('DataFrame', 1000, 'float', 'skew')
+     1.51±0.02ms      2.05±0.01ms     1.36  rolling.Methods.time_rolling('DataFrame', 1000, 'int', 'skew')
+      1.51±0.2ms      2.05±0.01ms     1.36  rolling.Methods.time_rolling('Series', 1000, 'float', 'kurt')
+     1.02±0.01ms      1.38±0.01ms     1.36  rolling.ExpandingMethods.time_expanding('DataFrame', 'float', 'mean')
+     1.08±0.01ms      1.46±0.02ms     1.36  rolling.ExpandingMethods.time_expanding('DataFrame', 'int', 'mean')
+        962±60μs         1.28±0ms     1.34  rolling.Methods.time_rolling('Series', 10, 'int', 'sum')
+         841±5μs      1.12±0.01ms     1.33  rolling.ExpandingMethods.time_expanding('Series', 'float', 'sum')
+     1.26±0.01ms      1.66±0.02ms     1.33  rolling.ExpandingMethods.time_expanding('Series', 'int', 'skew')
+        969±80μs      1.28±0.01ms     1.32  rolling.Methods.time_rolling('Series', 1000, 'int', 'sum')
+     1.20±0.02ms      1.58±0.01ms     1.31  rolling.ExpandingMethods.time_expanding('Series', 'float', 'skew')
+     1.14±0.01ms      1.48±0.01ms     1.30  rolling.Methods.time_rolling('DataFrame', 10, 'int', 'sum')
+         899±5μs         1.17±0ms     1.30  rolling.ExpandingMethods.time_expanding('Series', 'int', 'sum')
+     1.08±0.04ms      1.40±0.01ms     1.30  rolling.Methods.time_rolling('DataFrame', 10, 'float', 'sum')
+     1.09±0.04ms      1.41±0.01ms     1.29  rolling.Methods.time_rolling('DataFrame', 1000, 'float', 'sum')
+        1.36±0ms      1.75±0.01ms     1.29  rolling.ExpandingMethods.time_expanding('DataFrame', 'float', 'skew')
+     1.15±0.06ms      1.47±0.01ms     1.28  rolling.Methods.time_rolling('DataFrame', 1000, 'int', 'sum')
+        1.01±0ms         1.28±0ms     1.27  rolling.ExpandingMethods.time_expanding('DataFrame', 'float', 'sum')
+        1.43±0ms      1.81±0.01ms     1.27  rolling.ExpandingMethods.time_expanding('DataFrame', 'int', 'skew')
+     1.22±0.03ms      1.54±0.01ms     1.26  rolling.Methods.time_rolling('Series', 10, 'float', 'count')
+        1.10±0ms      1.38±0.01ms     1.26  rolling.ExpandingMethods.time_expanding('Series', 'int', 'count')
+     1.07±0.01ms         1.35±0ms     1.26  rolling.ExpandingMethods.time_expanding('DataFrame', 'int', 'sum')
+        1.36±0ms      1.71±0.02ms     1.26  rolling.Methods.time_rolling('DataFrame', 10, 'int', 'count')
+     1.40±0.01ms      1.74±0.01ms     1.24  rolling.Methods.time_rolling('DataFrame', 10, 'float', 'count')
+     1.14±0.01ms         1.40±0ms     1.23  rolling.ExpandingMethods.time_expanding('Series', 'float', 'count')
+      1.22±0.1ms         1.49±0ms     1.22  rolling.Methods.time_rolling('Series', 10, 'int', 'count')
+     1.40±0.04ms      1.70±0.01ms     1.21  rolling.Methods.time_rolling('DataFrame', 1000, 'int', 'count')
+     1.43±0.09ms      1.73±0.01ms     1.21  rolling.Methods.time_rolling('DataFrame', 1000, 'float', 'count')
+        1.29±0ms      1.56±0.01ms     1.21  rolling.ExpandingMethods.time_expanding('DataFrame', 'int', 'count')
+     1.33±0.01ms      1.60±0.01ms     1.20  rolling.ExpandingMethods.time_expanding('DataFrame', 'float', 'count')
+        1.38±0ms      1.66±0.01ms     1.20  rolling.ExpandingMethods.time_expanding('Series', 'float', 'std')
+     1.44±0.01ms      1.72±0.01ms     1.19  rolling.ExpandingMethods.time_expanding('Series', 'int', 'std')
+     1.56±0.01ms         1.84±0ms     1.18  rolling.ExpandingMethods.time_expanding('DataFrame', 'float', 'std')
+     1.62±0.01ms      1.89±0.01ms     1.17  rolling.ExpandingMethods.time_expanding('DataFrame', 'int', 'std')

SOME BENCHMARKS HAVE CHANGED SIGNIFICANTLY.
PERFORMANCE DECREASED.