BUG: select_dtypes(include="int") has different behaviour on windows and linux · Issue #36596 · pandas-dev/pandas (original) (raw)
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version (1.1.2) of pandas.
Problem description
Using DataFrame.select_dtypes(include='int')
on a DataFrame that contains an integer column returns an empty dataframe in windows, yet selects the correct columns in linux (Ubuntu 20.04).
DataFrame.select_dtypes(include='integer')
works as expected in both environments.
In both cases the dtype of the column is 'int64'.
Code Sample, a copy-pastable example
df = pd.DataFrame(columns=["Ints"], data=[1,2,3]) df.select_dtypes(include="int")
Output
on ubuntu (tested 16.04, 18.04, 20.04, python 3.6, 3.7, 3.8)
on windows 10 (python 3.6, 3.7. 3.8)
Empty DataFrame
Columns: []
Index: [0, 1, 2]
Output of pd.show_versions()
INSTALLED VERSIONS
commit : 2a7d332
python : 3.8.6.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19041
machine : AMD64
processor : Intel64 Family 6 Model 126 Stepping 5, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_Europe.1252
pandas : 1.1.2
numpy : 1.19.2
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.1
setuptools : 49.2.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.18.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None
INSTALLED VERSIONS
commit : 2a7d332
python : 3.7.8.final.0
python-bits : 64
OS : Linux
OS-release : 4.19.104-microsoft-standard
Version : #1 SMP Wed Feb 19 06:37:35 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.2
numpy : 1.19.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 47.1.0
Cython : None
pytest : 5.4.3
hypothesis : 5.20.3
sphinx : 3.1.2
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.16.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.3.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.5.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None