BUG: pandas.Index
cannot be subclassed (despite saying it can be in the docs) · Issue #37882 · pandas-dev/pandas (original) (raw)
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- (optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
import pandas
class CustomIndex(pandas.Index):
def __new__(cls, data, **kwargs):
return super().__new__(cls, data, **kwargs).view(cls)
def __init__(self, data, **kwargs):
super().__init__(self, data, **kwargs)
if name == 'main': index = CustomIndex([1,2,3]) print(type(index), index)
The result is: <class 'pandas.core.indexes.numeric.Int64Index'> Int64Index([1, 2, 3], dtype='int64')
Problem description
In the pandas docs: "The motivation for having an Index class in the first place was to enable different implementations of indexing. This means that it’s possible for you, the user, to implement a custom Index subclass that may be better suited to a particular application than the ones provided in pandas."
Expected Output
<class 'CustomIndex'> CustomIndex([1, 2, 3], dtype='int64')
Output of pd.show_versions()
>>> pd.show_versions()
INSTALLED VERSIONS
------------------
commit : 67a3d4241ab84419856b84fc3ebc9abcbe66c6b3
python : 3.8.5.final.0
python-bits : 64
OS : Darwin
OS-release : 20.1.0
Version : Darwin Kernel Version 20.1.0: Sat Oct 31 00:07:11 PDT 2020; root:xnu-7195.50.7~2/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.4
numpy : 1.19.4
pytz : 2020.4
dateutil : 2.8.1
pip : 20.2.4
setuptools : 50.3.2
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.19.0
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 2.0.0
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.5.4
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None