BUG: DatetimeIndex.to_period().to_timestamp() forgets freq value · Issue #38885 · pandas-dev/pandas (original) (raw)
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- (optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
pd.date_range(start='1/1/2018 00:00:00', end='2/1/2018 00:01:00', freq="MS") DatetimeIndex(['2018-01-01', '2018-02-01'], dtype='datetime64[ns]', freq='MS')
pd.date_range(start='1/1/2018 00:00:00', end='2/1/2018 00:01:00', freq="MS").to_period().to_timestamp() DatetimeIndex(['2018-01-01', '2018-02-01'], dtype='datetime64[ns]', freq=None)
Problem description
Why is freq=None
here in the end? Is it possible to make conversion between DatetimeIndex
and PeriodIndex
more reliable in any way? How can I know which freq
values are not able to be converted from PeriodIndex
into DatetimeIndex
?
Expected Output:
I would expect to have the same freq
value after doing .to_period().to_timestamp()
.
pd.date_range(start='1/1/2018 00:00:00', end='2/1/2018 00:01:00', freq="MS").to_period().to_timestamp() DatetimeIndex(['2018-01-01', '2018-02-01'], dtype='datetime64[ns]', freq="MS")
Output of pd.show_versions()
<details>
INSTALLED VERSIONS
------------------
commit : 3e89b4c4b1580aa890023fc550774e63d499da25
python : 3.7.9.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.18362
machine : AMD64
processor : AMD64 Family 21 Model 112 Stepping 0, AuthenticAMD
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 1.2.0
numpy : 1.19.4
pytz : 2019.3
dateutil : 2.8.1
pip : 20.3.1
setuptools : 51.0.0.post20201207
Cython : 0.29.17
pytest : 6.1.2
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.19.0
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : 0.8.4
fastparquet : None
gcsfs : None
matplotlib : 3.3.3
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.5.4
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : 0.50.1
</details>