BUG: Change in behavior of replace with integer series and float to_replace · Issue #40371 · pandas-dev/pandas (original) (raw)


Code Sample, a copy-pastable example

import numpy as np import pandas as pd

pd.Series([1]).replace(np.array([1.]), [0])

Problem description

As of version 1.1.5 (and earlier), the code snippet above yielded pd.Series([0]) (i.e. the replacement took place). As of version 1.2.0 (and later), the code snippet above yields pd.Series([1]) (i.e. the replacement does not take place). In both versions, the replacement takes place if we pass either an integer array (np.array([1])) or a list ([1.]) to replace instead of a float array (np.array([1.])). Is this change in behavior intentional?

Output of pd.show_versions()

INSTALLED VERSIONS
------------------
commit           : f2c8480af2f25efdbd803218b9d87980f416563e
python           : 3.8.8.final.0
python-bits      : 64
OS               : Linux
OS-release       : 5.4.0-1038-aws
Version          : #40~18.04.1-Ubuntu SMP Sat Feb 6 01:56:56 UTC 2021
machine          : x86_64
processor        : x86_64
byteorder        : little
LC_ALL           : C.UTF-8
LANG             : C.UTF-8
LOCALE           : en_US.UTF-8

pandas           : 1.2.3
numpy            : 1.19.5
pytz             : 2020.5
dateutil         : 2.8.1
pip              : 21.0.1
setuptools       : 49.6.0.post20210108
Cython           : None
pytest           : 6.2.2
hypothesis       : None
sphinx           : 3.5.2
blosc            : None
feather          : None
xlsxwriter       : 1.3.7
lxml.etree       : None
html5lib         : None
pymysql          : None
psycopg2         : 2.8.6 (dt dec pq3 ext lo64)
jinja2           : 2.11.3
IPython          : 7.21.0
pandas_datareader: None
bs4              : None
bottleneck       : None
fsspec           : 0.8.7
fastparquet      : None
gcsfs            : None
matplotlib       : 3.3.4
numexpr          : 2.7.3
odfpy            : None
openpyxl         : 3.0.6
pandas_gbq       : None
pyarrow          : 3.0.0
pyxlsb           : None
s3fs             : None
scipy            : 1.6.0
sqlalchemy       : 1.3.23
tables           : None
tabulate         : 0.8.9
xarray           : 0.17.0
xlrd             : 2.0.1
xlwt             : None
numba            : 0.52.0