BUG: Unexpected behaviour of groupby + rank(pct=True, method="dense") · Issue #40518 · pandas-dev/pandas (original) (raw)
- I have checked that this issue has not already been reported. There was a previous issue about
rank(pct=True, method="dense")
but it was about applying it topd.Series
and has been resolved. - I have confirmed this bug exists on the latest version of pandas.
- (optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
import pandas as pd import numpy as np data = [ [1, 3, 1], [1, 3, -5], [1, 3, 3], [1, 3, 3], [2, 3, np.nan], [1, 3, np.nan], ] df = pd.DataFrame(data, columns=["gr1", "gr2", "val"]) df["r"] = df.groupby(["gr1", "gr2"])["val"].rank( method="dense", pct=True ) print(df)
Output:
gr1 gr2 val r
0 1 3 1.0 1.0
1 1 3 -5.0 0.5
2 1 3 3.0 1.5
3 1 3 3.0 1.5
4 2 3 NaN NaN
5 1 3 NaN NaN
Problem description
The pct=True
option should always return values in [0,1]
. If we remove the row with gr1==2
there is no issue. Somehow the rank function miscounts the number of elements in each group which should be used to turn the ranked series to [0,1]
ranked series. Note that pd.Series([1,-5,3,3,np.nan]).rank(pct=True, method='dense').values
returns the desired output: array([0.66666667, 0.33333333, 1. , 1. , nan])
so the issue is related to groupby
. Also, trying out all the options of na_option
gives undesired result.
Expected Output
gr1 gr2 val r
0 1 3 1.0 0.666667
1 1 3 -5.0 0.333333
2 1 3 3.0 1.000000
3 1 3 3.0 1.000000
4 2 3 NaN NaN
5 1 3 NaN NaN
INSTALLED VERSIONS
commit : f2c8480
python : 3.9.2.final.0
python-bits : 64
OS : Darwin
OS-release : 20.3.0
Version : Darwin Kernel Version 20.3.0: Thu Jan 21 00:06:51 PST 2021; root:xnu-7195.81.3~1/RELEASE_ARM64_T8101
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
pandas : 1.2.3
numpy : 1.20.1
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 54.1.2
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None