BUG: to_csv produces improper output for categorical datetimes · Issue #40754 · pandas-dev/pandas (original) (raw)


Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.

Code Sample, a copy-pastable example

ser = pd.to_datetime(pd.Series(["2021-03-27"]), format="%Y-%m-%d") ser 0 2021-03-27 dtype: datetime64[ns] ser.to_csv() ',0\n0,2021-03-27\n' ser.astype("category") 0 2021-03-27 dtype: category Categories (1, datetime64[ns]): [2021-03-27] ser.astype("category").to_csv() ',0\n0,1616803200000000000\n' ser.astype("category").to_csv(date_format="%Y-%m-%dT%H:%M:%S") ',0\n0,1616803200000000000\n'

Problem description

When a categorical datetime is written as CSV, it disregards date_format (even if given explicitly) and writes the timestamp in integer nanoseconds.

Expected Output

ser.astype("category").to_csv() ',0\n0,2021-03-27\n' ser.astype("category").to_csv(date_format="%Y-%m-%dT%H:%M:%S") ',0\n0,2021-03-27T00:00:00\n'

Output of pd.show_versions()

INSTALLED VERSIONS

commit : f2c8480
python : 3.9.1.final.0
python-bits : 64
OS : Linux
OS-release : 5.11.8-arch1-1
Version : #1 SMP PREEMPT Sun, 21 Mar 2021 01:55:51 +0000
machine : x86_64
processor :
byteorder : little
LC_ALL :
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.2.3
numpy : 1.19.5
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 49.2.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.20.0
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : 0.8.7
fastparquet : None
gcsfs : None
matplotlib : 3.3.4
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.0
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None