PERF: groupby performance regression in 1.2.x · Issue #41596 · pandas-dev/pandas (original) (raw)


Code Sample, a copy-pastable example

import numpy as np import pandas as pd pd.version

cols = list('abcdefghjkl') df = pd.DataFrame(np.random.randint(0, 100, size=(1_000_000, len(cols))), columns=cols) df_str = df.astype(str) df_string = df.astype('string')

%timeit df_str.groupby('a')[cols[1:]].agg('last')

%timeit df_string.groupby('a')[cols[1:]].agg('last')

Problem description

Pandas 1.2.x is much slower (9x slower) than 1.1.5 in the groupby aggregation above when the columns are of string dtype. When the columns are of object dtype performance are comparable across the two pandas version.

Expected Output

In pandas 1.1.5 this groupby-aggregation is a bit faster with string dtype than with object dtype:

%timeit df_str.groupby('a')[cols[1:]].agg('last') 680 ms ± 3.86 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit df_string.groupby('a')[cols[1:]].agg('last') 544 ms ± 3.88 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Conversely, in pandas 1.2.4 the same groupby-aggregation is 7x slower with string dtype than with object dtype:

%timeit df_str.groupby('a')[cols[1:]].agg('last') 700 ms ± 7.54 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit df_string.groupby('a')[cols[1:]].agg('last') 4.93 s ± 104 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

I would expect comparable performance between pandas 1.1.5 and 1.2.4, instead we have a large performance regression in 1.2.4 when performing the groupby aggregation with string dtypes.

Output of pd.show_versions()

INSTALLED VERSIONS

commit : b5958ee
python : 3.8.10.final.0
python-bits : 64
OS : Linux
OS-release : 5.11.0-17-generic
Version : #18-Ubuntu SMP Thu May 6 20:10:11 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.1.5
numpy : 1.20.3
pytz : 2021.1
dateutil : 2.8.1
pip : 21.1.1
setuptools : 49.6.0.post20210108
Cython : 0.29.23
pytest : 6.2.4
hypothesis : None
sphinx : 4.0.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.6.3
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.1
IPython : 7.23.1
pandas_datareader: None
bs4 : 4.9.3
bottleneck : 1.3.2
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.4.2
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 4.0.0
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.6.3
sqlalchemy : 1.3.23
tables : None
tabulate : 0.8.9
xarray : None
xlrd : None
xlwt : None
numba : 0.53.1