REGR: 1.3.0rc behavior change with concatenating boolean and numeric columns · Issue #42092 · pandas-dev/pandas (original) (raw)
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- (optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
df1 = pd.DataFrame(pd.Series([True, False, True, True], dtype='bool')) df2 = pd.DataFrame(pd.Series([1,0,1], dtype='int64'))
new_df = pd.concat([df1,df2]) # dtype changed from int64 to object assert new_df[0].dtype == 'object'
Problem description
Previously, the concat
call would produce a series with dtype int64
, converting the bools to 1s and 0s. Now, all the values are maintained, so the dtype is object
.
Expected Output
I'm not sure if this behavior change is expected or not, but I didn't see anything in the release notes that made me think it was expected, so I'd expect the result to allow assert new_df[0].dtype == 'int64'
Output of pd.show_versions()
INSTALLED VERSIONS
commit : 2dd9e9b
python : 3.8.2.final.0
python-bits : 64
OS : Darwin
OS-release : 19.6.0
Version : Darwin Kernel Version 19.6.0: Sun Jul 5 00:43:10 PDT 2020; root:xnu-6153.141.1~9/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.3.0rc1
numpy : 1.20.3
pytz : 2021.1
dateutil : 2.8.1
pip : 21.1.2
setuptools : 41.2.0
Cython : None
pytest : 6.0.1
hypothesis : None
sphinx : 3.2.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.18.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : 2021.06.0
fastparquet : 0.5.0
gcsfs : None
matplotlib : 3.2.2
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 4.0.1
pyxlsb : None
s3fs : None
scipy : 1.6.3
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : 0.53.1