option dtype in pandas.read_csv does not work properly for mulilevel columns · Issue #42446 · pandas-dev/pandas (original) (raw)


Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.

Code Sample, a copy-pastable example

import pandas as pd
df= pd.DataFrame({
('A', 'int16'): pd.Series([1, 2, 3, 4], dtype='int16'),
('A', 'int32'): pd.Series([132, 232, 332, 432], dtype='int32'),
('B', 'float32'): pd.Series([1.01, 1.02, 1.03, 1.04], dtype='float32'),
('B', 'int16'): pd.Series([21, 22, 23, 24], dtype='int16')})
print(df)
df.to_csv('test_df.csv')
print(df.dtypes)

full column name tuples with level 0/1 labels don't work

df_new= pd.read_csv(
'test_df.csv',
header=list(range(2)),
dtype = {
('A', 'int16'): 'int16',
('A', 'int32'): 'int32'
})
print(df_new.dtypes)

See my SO article for more detailed infos:
https://stackoverflow.com/questions/54699527/dtype-is-ignored-when-using-multilevel-columns

Problem description

Although the data types where passed in read_csv, they are not applied. dtype in read_csv only seems to work for column names that contain only one level. For Multilevel columns it generally does not seem to work.

Expected Output

Unnamed: 0_level_0 Unnamed: 0_level_1 int64
A int16 int16
int32 int32
B float32 float64
int16 int64

Output of pd.show_versions()

INSTALLED VERSIONS

commit : 7d32926
python : 3.7.9.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-77-generic
Version : #86-Ubuntu SMP Thu Jun 17 02:35:03 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : de_DE.UTF-8
LOCALE : de_DE.UTF-8

pandas : 1.2.2
numpy : 1.20.1
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 52.0.0.post20210125
Cython : 0.29.23
pytest : 6.2.2
hypothesis : None
sphinx : 4.0.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.5.0
html5lib : 1.1
pymysql : None
psycopg2 : 2.8.6 (dt dec pq3 ext lo64)
jinja2 : 2.11.3
IPython : 7.22.0
pandas_datareader: None
bs4 : 4.9.3
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.3.4
numexpr : 2.7.3
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 3.0.0
pyxlsb : None
s3fs : None
scipy : 1.6.2
sqlalchemy : None
tables : 3.6.1
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : 0.51.2