BUG: Series.groupby fails with InvalidIndexError on time series with a tuple-named grouper. · Issue #42731 · pandas-dev/pandas (original) (raw)
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- (optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
import pandas as pd
s = pd.Series(index=[pd.Timestamp(2021,7,26)], name=('A', 1)) s.groupby(s==s) # raises InvalidIndexError
Problem description
There are several things necessary to trigger this:
- The index has to consist of
pd.Timestamp
s. If you change the example tos = pd.Series(index=[0,1], name=('A', 1))
everything is fine. - The grouper, i.e.
groupby
'sby
argument , has to be aSeries
named with a tuple (like you get if you select aMultiIndex
-column from aDataFrame
). If you change the example tos.groupby((s==s).rename('foo'))
everything is fine. Same goes if you use a pure list or a function. - The object to group must be a
Series
. If you change the example topd.DataFrame(s).groupby(s==s)
everything is fine. - You need
pandas>=1.1.3
. If you downgrade to an older version - guess what - everything is fine.
Why this is a problem: The name of a grouper should not matter and it is just not to understand why a time series behaves differently than any other kind of Series
.
Expected Output
Behavior should be as for non-time-series.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : db08276
python : 3.8.3.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19041
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 13, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : de_DE.cp1252
pandas : 1.1.3
numpy : 1.20.3
pytz : 2021.1
dateutil : 2.8.2
pip : 21.1.3
setuptools : 52.0.0.post20210125
Cython : None
pytest : 6.2.4
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : 1.3.2
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : 2.7.3
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None