REF: remove libreduction.apply_frame_axis0 by jbrockmendel · Pull Request #42992 · pandas-dev/pandas (original) (raw)
time asv continuous -E virtualenv -f 1.01 --record-samples --append-samples master HEAD -b groupby
[...]
before after ratio
[860ff03e] [83dacf98]
<master> <ref-libreduction>
+ 5.27±0.4ms 12.1±1ms 2.29 groupby.Apply.time_scalar_function_single_col(4)
+ 16.1±0.8ms 34.8±2ms 2.16 groupby.Apply.time_scalar_function_multi_col(4)
+ 141±5μs 146±5μs 1.03 groupby.GroupByMethods.time_dtype_as_group('float', 'head', 'transformation')
+ 129±7μs 133±8μs 1.03 groupby.GroupByMethods.time_dtype_as_group('float', 'cumcount', 'transformation')
+ 130±5μs 133±6μs 1.03 groupby.GroupByMethods.time_dtype_as_group('float', 'cumcount', 'direct')
+ 159±7μs 163±6μs 1.03 groupby.GroupByMethods.time_dtype_as_group('uint', 'cumprod', 'transformation')
+ 142±6μs 146±4μs 1.03 groupby.GroupByMethods.time_dtype_as_group('float', 'head', 'direct')
+ 61.4±3μs 62.8±4μs 1.02 groupby.GroupByMethods.time_dtype_as_group('float', 'cummax', 'transformation')
+ 53.7±3μs 54.9±4μs 1.02 groupby.GroupByMethods.time_dtype_as_field('uint', 'any', 'direct')
+ 74.2±7μs 75.9±2μs 1.02 groupby.GroupByMethods.time_dtype_as_group('uint', 'count', 'transformation')
+ 195±6μs 199±5μs 1.02 groupby.GroupByMethods.time_dtype_as_group('float', 'sum', 'transformation')
+ 94.2±4μs 96.1±3μs 1.02 groupby.GroupByMethods.time_dtype_as_group('uint', 'last', 'transformation')
+ 54.8±2μs 55.8±1μs 1.02 groupby.GroupByMethods.time_dtype_as_group('uint', 'any', 'direct')
+ 94.0±3μs 95.6±2μs 1.02 groupby.GroupByMethods.time_dtype_as_group('uint', 'last', 'direct')
+ 308±9μs 312±20μs 1.01 groupby.GroupByMethods.time_dtype_as_group('uint', 'sem', 'direct')
+ 156±5μs 158±10μs 1.01 groupby.GroupByMethods.time_dtype_as_group('float', 'bfill', 'transformation')
- 281±6ms 277±20ms 0.99 groupby.AggEngine.time_dataframe_numba(False)
- 511±10ms 504±20ms 0.99 groupby.AggEngine.time_series_numba(True)
- 511±20ms 503±20ms 0.99 groupby.AggEngine.time_dataframe_numba(True)
- 1.58±0.2ms 1.55±0.03ms 0.98 rolling.ExpandingMethods.time_expanding_groupby('Series', 'float', 'median')
- 1.96±0.2ms 1.92±0.06ms 0.98 groupby.CountMultiInt.time_multi_int_count
- 60.4±1ms 59.1±0.9ms 0.98 groupby.GroupByMethods.time_dtype_as_field('uint', 'skew', 'direct')
- 122±10ms 119±3ms 0.98 groupby.MultiColumn.time_lambda_sum
- 282±10ms 276±10ms 0.98 groupby.AggEngine.time_series_numba(False)
- 20.2±2ms 19.4±0.7ms 0.96 groupby.AggEngine.time_dataframe_cython(False)
- 39.7±2ms 37.8±4ms 0.95 groupby.Apply.time_copy_function_multi_col(5)
- 1.23±0.09ms 1.06±0.04ms 0.86 groupby.FillNA.time_df_bfill
- 1.23±0.1ms 1.03±0.09ms 0.84 groupby.FillNA.time_df_ffill
- 397±10ms 223±7ms 0.56 groupby.Apply.time_copy_overhead_single_col(4)
- 1.20±0.03s 604±30ms 0.50 groupby.Apply.time_copy_function_multi_col(4)
Updated with a larger sample size, looks more reasonable