BUG: Default value for Series(dtype=int)
is not pd.NA
· Issue #43017 · pandas-dev/pandas (original) (raw)
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- (optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
pd.Series(index=[0], dtype=int)
Problem description
For other types, the default missing value indicator is set properly:
pd.Series(index=[0], dtype=float)
0 NaN
dtype: float64
pd.Series(index=[0], dtype="datetime64[ns]")
0 NaT
dtype: datetime64[ns]
pd.Series(index=[0], dtype=bool)
0 False
dtype: bool
(This might be tricky, but understandable)
However, for integer types, the default missing value is set to 0 instead of pd.NA
, which is dangerous for interpretation.
Expected Output
Either
or
makes sense, given how int64
is converted when having missing values, the latter case may be better.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : c7f7443
python : 3.7.11.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19041
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : None.None
pandas : 1.3.1
numpy : 1.20.3
pytz : 2021.1
dateutil : 2.8.2
pip : 21.2.2
setuptools : 52.0.0.post20210125
Cython : 0.29.24
pytest : 6.1.2
hypothesis : 6.14.1
sphinx : 4.0.2
blosc : None
feather : None
xlsxwriter : 1.4.4
lxml.etree : 4.6.3
html5lib : 1.1
pymysql : 1.0.2
psycopg2 : None
jinja2 : 3.0.1
IPython : 7.22.0
pandas_datareader: None
bs4 : 4.9.3
bottleneck : 1.3.2
fsspec : 2021.07.0
fastparquet : None
gcsfs : None
matplotlib : 3.4.2
numexpr : 2.7.3
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : 3.0.0
pyxlsb : None
s3fs : 0.4.2
scipy : 1.6.2
sqlalchemy : 1.4.22
tables : 3.6.1
tabulate : 0.8.9
xarray : 0.19.0
xlrd : 2.0.1
xlwt : 1.3.0
numba : 0.53.0