BUG: .equals method returns true when comparing floats with dtype object to None · Issue #44190 · pandas-dev/pandas (original) (raw)
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- I have confirmed this bug exists on the master branch of pandas.
Reproducible Example
import numpy as np import pandas as pd
left = pd.Series([-np.inf, np.nan, -1.0, 0.0, 1.0, 10 / 3, np.inf], dtype=object) right = pd.Series([None] * len(left))
print(pd.DataFrame(dict(left=left, right=right))) print(f"{left.equals(right)=}") print(f"{right.equals(left)=}")
Issue Description
If one constructs a Series left
containing floating-point data, but declared as dtype object
, and another Series right
of the same length, containing only None
, then left.equals.right
returns True
, even though the two series are demonstrably not equal.
Making the comparison the other way round (i.e. right.equals(right)
) returns False
as is semantically correct.
Some preliminary testing brings up the following conditions for the bug to occur:
left
can consist of any combination of float values - including+/-inf
,NaN
, and both integral and fractional floats- If
left
contains values of any other type, the.equals
call will correctly returnFalse
- this includes ints andNone
itself - The bug seems to occur with DataFrames as well - calling
.to_frame()
on both sides before calling.equals()
has the same results. - The bug seems to have been introduced in pandas 1.3.0. I have observed it to occur in 1.3.0 and 1.3.4, and it does not occur on 1.2.5.
- The bug occurs in both WSL and (ARM) macOS environments - I haven't tested on other platforms.
Expected Behavior
left.equals(right)
should return False
.
Installed Versions
INSTALLED VERSIONS
commit : 945c9ed
python : 3.9.7.final.0
python-bits : 64
OS : Linux
OS-release : 4.4.0-19041-Microsoft
Version : #1237-Microsoft Sat Sep 11 14:32:00 PST 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.3.4
numpy : 1.21.3
pytz : 2021.3
dateutil : 2.8.2
pip : 20.3.4
setuptools : 58.2.0
Cython : 0.29.24
pytest : 6.2.5
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.6.3
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.2
IPython : 7.28.0
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.4.3
numexpr : 2.7.3
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 5.0.0
pyxlsb : None
s3fs : None
scipy : 1.7.1
sqlalchemy : 1.3.24
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None