PERF: Slow performance of to_dict("records")
· Issue #46470 · pandas-dev/pandas (original) (raw)
Pandas version checks
- I have checked that this issue has not already been reported.
- I have confirmed this issue exists on the latest version of pandas.
- I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
df.to_dict("records")
is slow compared to a purely Python implementation.
For example
#!/usr/bin/env python
import numpy as np
import pandas as pd
import time
def to_dict_pandas(df):
return df.to_dict("records")
def to_dict_custom(df):
cols = list(df)
col_arr_map = {col: df[col].astype(object).to_numpy() for col in cols}
records = []
for i in range(len(df)):
record = {col: col_arr_map[col][i] for col in cols}
records.append(record)
return records
def main():
f8_cols = "ABC"
i8_cols = "DEF"
str_cols = "GHI"
n = 5_000_000
rs = np.random.RandomState(42)
df_data = {
**{f8_col: rs.random(n) for f8_col in f8_cols},
**{i8_col: rs.randint(-1e9, 1e9, n) for i8_col in i8_cols},
**{str_col: rs.choice(["LONG STRING" * 5, "SHORT STRING"], n) for str_col in str_cols},
}
df = pd.DataFrame(df_data)
print(df)
print(df.dtypes)
t1 = time.time()
records_pandas = to_dict_pandas(df)
t2 = time.time()
print(f"Pandas took: {t2-t1:,.2f}s")
t1 = time.time()
records_custom = to_dict_custom(df)
t2 = time.time()
assert records_pandas[0] == records_custom[0]
print(f"Custom took: {t2-t1:,.2f}s")
if __name__ == "__main__":
main()
I get
Pandas took: 34.32s
Custom took: 10.32s
Seems to spend most of it's time in maybe_box_native. Which probably could be avoided becuase we could determine the dtype of each column once at the start
Installed Versions
INSTALLED VERSIONS
commit : 66e3805
python : 3.7.13.final.0
python-bits : 64
OS : Darwin
OS-release : 20.6.0
Version : Darwin Kernel Version 20.6.0: Mon Aug 30 06:12:21 PDT 2021; root:xnu-7195.141.6~3/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8
pandas : 1.3.5
numpy : 1.21.1
pytz : 2021.1
dateutil : 2.8.2
pip : 22.0.4
setuptools : 57.0.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 1.3.7
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.9.3 (dt dec pq3 ext lo64)
jinja2 : 3.0.1
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : 2021.07.0
fastparquet : None
gcsfs : None
matplotlib : 3.5.0
numexpr : None
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : 4.0.1
pyxlsb : None
s3fs : None
scipy : 1.7.0
sqlalchemy : 1.4.32
tables : None
tabulate : 0.8.9
xarray : None
xlrd : 1.1.0
xlwt : None
numba : 0.53.1
Prior Performance
No response