BUG: dropna=False
not respected for groupby aggs on result of concatenated dataframes · Issue #46783 · pandas-dev/pandas (original) (raw)
Pandas version checks
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df1 = pd.DataFrame( { "a": [1, 2, 3, 4], "b": [1, None, 1, 3], "c": [4, 5, 6, 3], } )
df2 = pd.DataFrame( { "a": [None, None, 7, 8], "b": [None, 3, 1, 3], "c": [2, 1, 0, 0], } )
res1 = df1.groupby(["a", "b"], dropna=False).sum() res2 = df2.groupby(["a", "b"], dropna=False).sum()
pd.concat([res1, res2]).groupby(["a", "b"], dropna=False).sum()
Issue Description
In some cases (haven't narrowed this to an exact cause), dropna=False
is not respected when doing groupby aggregations on the result of a concat
operation. In this example, it is specifically coming up when the dataframes concatenated are the results of multi-column groupby aggregations with dropna=False
.
For context, this was discovered through debugging dask/dask#8817; Dask's apply-concat-apply model generally depends on applying operations to several dataframes (partitions of one large Dask dataframe), concatenating these results together, and applying a final aggregating operation on the concat result. As a result, this behavior is breaking dropna=False
support for all multi-column groupby aggregations in Dask.
Expected Behavior
expected
pd.concat([df1, df2]).groupby(["a", "b"], dropna=False).sum()
c
a b
1.0 1.0 4
2.0 NaN 5
3.0 1.0 6
4.0 3.0 3
7.0 1.0 0
8.0 3.0 0
NaN 3.0 1
NaN 2
actual
pd.concat([res1, res2]).groupby(["a", "b"], dropna=False).sum()
c
a b
1.0 1.0 1
3.0 1.0 1
4.0 3.0 1
7.0 1.0 1
8.0 3.0 1
Installed Versions
INSTALLED VERSIONS
commit : dafa5dd
python : 3.8.13.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-1083-oracle
Version : #91-Ubuntu SMP Mon Oct 25 06:45:22 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.5.0.dev0+682.gdafa5dd84a
numpy : 1.22.3
pytz : 2022.1
dateutil : 2.8.2
pip : 22.0.4
setuptools : 62.1.0
Cython : 0.29.28
pytest : 7.1.1
hypothesis : 6.43.1
sphinx : 4.5.0
blosc : None
feather : None
xlsxwriter : 3.0.3
lxml.etree : 4.8.0
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 8.2.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : 1.3.4
brotli :
fastparquet : 0.8.0
fsspec : 2021.11.0
gcsfs : 2021.11.0
markupsafe : 2.1.1
matplotlib : 3.5.1
numba : 0.53.1
numexpr : 2.8.0
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : 7.0.0
pyreadstat : 1.1.4
pyxlsb : None
s3fs : 2021.11.0
scipy : 1.8.0
snappy :
sqlalchemy : 1.4.35
tables : 3.7.0
tabulate : 0.8.9
xarray : 0.18.2
xlrd : 2.0.1
xlwt : 1.3.0
zstandard : None