describe on a groupby · Issue #4792 · pandas-dev/pandas (original) (raw)
I think expected result of this is with multiindex column...
df = pd.DataFrame({'PRICE': {pd.Timestamp('2011-01-06 10:59:05', tz=None): 24990,
pd.Timestamp('2011-01-06 12:43:33', tz=None): 25499,
pd.Timestamp('2011-01-06 12:54:09', tz=None): 25499},
'VOLUME': {pd.Timestamp('2011-01-06 10:59:05', tz=None): 1500000000,
pd.Timestamp('2011-01-06 12:43:33', tz=None): 5000000000,
pd.Timestamp('2011-01-06 12:54:09', tz=None): 100000000}})
In [2]: g = df.groupby('PRICE')
In [3]: df.groupby('PRICE').describe() # expected .unstack(1)
Out[3]:
PRICE VOLUME
PRICE
24990 count 1 1.000000e+00
mean 24990 1.500000e+09
std NaN NaN
min 24990 1.500000e+09
25% 24990 1.500000e+09
50% 24990 1.500000e+09
75% 24990 1.500000e+09
max 24990 1.500000e+09
25499 count 2 2.000000e+00
mean 25499 2.550000e+09
std 0 3.464823e+09
min 25499 1.000000e+08
25% 25499 1.325000e+09
50% 25499 2.550000e+09
75% 25499 3.775000e+09
max 25499 5.000000e+09
In [4]: pd.DataFrame.foo = 1
In [5]: g.foo
Out[5]:
PRICE
24990 1
25499 1
dtype: int64
In [6]: pd.DataFrame.bar = lambda x: 1
In [7]: g.bar()
Out[7]:
PRICE
24990 1
25499 1
dtype: int64