BUG: unwanted type conversion when partial reassigning · Issue #50467 · pandas-dev/pandas (original) (raw)
Pandas version checks
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
from typing import Union
import numpy as np import pandas as pd
def get_sample_df(): return pd.DataFrame( [ ["1", np.nan], ["2", np.nan], ["3", np.nan], ["4", np.nan] ], dtype="object" # Reproduce the dataframe I'm working with. )
def try_cast_int(s: str) -> Union[int, str]: # some complex preprocessing here # I removed those to make my code shorter try: return int(s) except ValueError: return s
df = get_sample_df()
Due to business reasons, apply try_cast_int
only to the top half of df
.
df.iloc[:2, :] = df.iloc[:2, :].applymap(try_cast_int)
Issue Description
Hello pandas team!
I found a bug(?) today. I expect that the df
after the last line in the "Reproducible Example" will be a dataframe like below.
0 | 1 | |
---|---|---|
0 | 1 | np.NaN |
1 | 2 | np.NaN |
2 | 3 | np.NaN |
3 | 4 | np.NaN |
But what I got was like below. I have no idea why I got float
such like 1.0
and 2.0
instead of int
.
0 | 1 | |
---|---|---|
0 | 1.0 | np.NaN |
1 | 2.0 | np.NaN |
2 | 3 | np.NaN |
3 | 4 | np.NaN |
One interesting fact is df.iloc[:2, :].applymap(try_cast_int)
before reassigning will return a dataframe like below.
0 | 1 | |
---|---|---|
0 | 1 | np.NaN |
1 | 2 | np.NaN |
It seems that integers on the 1st column are converted into float values when partial reassigning.
My questions are
- Why type conversion happens?
- How can we avoid this behavior? (Is there any context manager or something for that?)
Expected Behavior
The df
after the last line in the "Reproducible Example" will be a dataframe like below.
0 | 1 | |
---|---|---|
0 | 1 | np.NaN |
1 | 2 | np.NaN |
2 | 3 | np.NaN |
3 | 4 | np.NaN |
I guess that "apply try_cast_int
to the top half of df
" is a cause of this issue. Pandas are not designed to do this kind of task, right?
I found that I can avoid this behavior and get what I want by following below steps.
- spit the
df
into 2 before applyingtry_cast_int
- apply
try_cast_int
to the top half of thedf
- No processing is done on the bottom half of the
df
- concat them into 1
example code
df = get_sample_df()
df_top = df.iloc[:2, :] df_top = df_top.applymap(try_cast_int)
df_bottom = df.iloc[2:, :]
df_full = pd.concat([df_top, df_bottom], axis=0)
Best of luck.
Installed Versions
INSTALLED VERSIONS
commit : 66e3805
python : 3.8.16.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.133+
Version : #1 SMP Fri Aug 26 08:44:51 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.3.5
numpy : 1.21.6
pytz : 2022.6
dateutil : 2.8.2
pip : 21.1.3
setuptools : 57.4.0
Cython : 0.29.32
pytest : 3.6.4
hypothesis : None
sphinx : 1.8.6
blosc : None
feather : 0.4.1
xlsxwriter : None
lxml.etree : 4.9.2
html5lib : 1.0.1
pymysql : None
psycopg2 : 2.9.5 (dt dec pq3 ext lo64)
jinja2 : 2.11.3
IPython : 7.9.0
pandas_datareader: 0.9.0
bs4 : 4.6.3
bottleneck : None
fsspec : 2022.11.0
fastparquet : None
gcsfs : None
matplotlib : 3.2.2
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : 0.17.9
pyarrow : 9.0.0
pyxlsb : None
s3fs : None
scipy : 1.7.3
sqlalchemy : 1.4.45
tables : 3.7.0
tabulate : 0.8.10
xarray : 2022.12.0
xlrd : 1.2.0
xlwt : 1.3.0
numba : 0.56.4