BUG: tz_convert not implemented for arrow timestamps · Issue #51718 · pandas-dev/pandas (original) (raw)

Pandas version checks

Reproducible Example

In [1]: df = pd.DataFrame({'ts': [pd.Timestamp('20230101 00:00:00+00:00')]}) [PYFLYBY] import pandas as pd

In [2]: df.to_parquet("~/tmp/test.parquet")

In [3]: with pd.option_context("mode.dtype_backend", "pyarrow"): ...: df2 = pd.read_parquet("~/tmp/test.parquet") ...:

In [4]: df2 Out[4]: ts 0 2023-01-01 00:00:00+00:00

In [5]: df2.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1 entries, 0 to 0 Data columns (total 1 columns):

Column Non-Null Count Dtype


0 ts 1 non-null timestamp[us, tz=UTC][pyarrow] dtypes: timestamp[us, tz=UTC]pyarrow memory usage: 137.0 bytes

In [6]: df2.ts.dt.tz_localize(None) Out[6]: 0 2023-01-01 00:00:00 Name: ts, dtype: timestamp[us][pyarrow]

In [7]: df2.ts.dt.tz_convert('America/Chicago')

AttributeError Traceback (most recent call last) Cell In [7], line 1 ----> 1 df2.ts.dt.tz_convert('America/Chicago')

AttributeError: 'ArrowTemporalProperties' object has no attribute 'tz_convert'

Issue Description

I think #50954 might have missed adding an implementation for tz_convert to ArrowTemporalProperties (maybe this was by design?). With mode.dtype_backend='pyarrow', our existing dataframes are being loaded as timestamp[us, tz=UTC][pyarrow], but any calls to tz_convert fail.

Expected Behavior

Ideally we can implement tz_convert natively so that it's fast.

If not, I think I'd prefer that tz_convert be monkey-patched in with a conversion to numpy data type, then tz_convert, then back to PyArrow backend (assuming that the conversion is lossless) so that existing APIs don't break when the dtype_backend changes. A warning might be appropriate there (so users know why the call might be slow, though I think it should still be pretty quick).

Installed Versions

INSTALLED VERSIONS

commit : 6bb8f73
python : 3.10.4.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.90.1-microsoft-standard-WSL2
Version : #1 SMP Fri Jan 27 02:56:13 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.1.0.dev0+93.g6bb8f73e75
numpy : 1.23.3
pytz : 2022.2.1
dateutil : 2.8.2
setuptools : 58.1.0
pip : 22.3
Cython : 0.29.32
pytest : 7.1.3
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.5.0
pandas_datareader: 0.10.0
bs4 : 4.11.1
bottleneck : 1.3.6
brotli : None
fastparquet : 0.8.3
fsspec : 2022.8.2
gcsfs : None
matplotlib : 3.5.3
numba : 0.56.4
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : 9.0.0
pyreadstat : None
pyxlsb : None
s3fs : 2022.8.2
scipy : 1.9.1
snappy : None
sqlalchemy : 1.4.41
tables : 3.8.0
tabulate : None
xarray : 2023.2.0
xlrd : 2.0.1
zstandard : 0.18.0
tzdata : None
qtpy : 2.3.0
pyqt5 : None