BUG: Inconsistency in datetime & timedelta binary operations in pandas-2.0 · Issue #52295 · pandas-dev/pandas (original) (raw)

Pandas version checks

Reproducible Example

In [34]: s = pd.Series([1233242342344, 232432434324, 332434242344], dtype='datetime64[ms]')

In [35]: s - np.datetime64("nat", 'ms') Out[35]: 0 NaT 1 NaT 2 NaT dtype: timedelta64[ns] # Can we preserve ms instead of ns here?

In [36]: s Out[36]: 0 2009-01-29 15:19:02.344 1 1977-05-14 04:33:54.324 2 1980-07-14 14:50:42.344 dtype: datetime64[ms]

In [37]: s - np.datetime64("nat") Out[37]: 0 NaT 1 NaT 2 NaT dtype: timedelta64[ns] # Can we preserve ms instead of ns here?

In [38]: s + np.timedelta64("nat") Out[38]: 0 NaT 1 NaT 2 NaT dtype: datetime64[ns] # Can we preserve ms instead of ns here?

In [39]: s + np.timedelta64("nat", 'ms') Out[39]: 0 NaT 1 NaT 2 NaT dtype: datetime64[ns] # Can we preserve ms instead of ns here?

In [42]: p = pd.Series([None, None, None], dtype='datetime64[ms]')

In [43]: p Out[43]: 0 NaT 1 NaT 2 NaT dtype: datetime64[ms]

In [44]: s - p Out[44]: 0 NaT 1 NaT 2 NaT dtype: timedelta64[ms] # This looks good.

Issue Description

When we perform a binary operation against a nat scalar, we seem to be always type-casting the result to ns resolution. Whereas incase of a nat series, we seem to be returning the expected type consistently. Can we make this behavior consistent in scalar nat cases too?

Expected Behavior

array vs array binop & array vs scalar binop must yield similar time resolutions.

Installed Versions

INSTALLED VERSIONS

commit : c2a7f1a
python : 3.10.10.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-76-generic
Version : #86-Ubuntu SMP Fri Jan 17 17:24:28 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.0.0rc1
numpy : 1.23.5
pytz : 2023.2
dateutil : 2.8.2
setuptools : 67.6.0
pip : 23.0.1
Cython : 0.29.33
pytest : 7.2.2
hypothesis : 6.70.1
sphinx : 5.3.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.11.0
pandas_datareader: None
bs4 : 4.12.0
bottleneck : None
brotli :
fastparquet : None
fsspec : 2023.3.0
gcsfs : None
matplotlib : None
numba : 0.56.4
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : 2023.3.0
scipy : 1.10.1
snappy :
sqlalchemy : 1.4.46
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
zstandard : None
tzdata : None
qtpy : None
pyqt5 : None