BUG: groupby get_group should be more datelike friendly · Issue #5267 · pandas-dev/pandas (original) (raw)
In [2]: df= pd.DataFrame({'DATE' : ['10-Oct-2013', '10-Oct-2013', '10-Oct-2013', '11-Oct-2013', '11-Oct-2013', '11-Oct-2013'],'VAL' : [1,2,3,4,5,6]})
In [3]: df['DATE'] = pd.to_datetime(df['DATE'])
In [4]: df
Out[4]:
DATE VAL
0 2013-10-10 00:00:00 1
1 2013-10-10 00:00:00 2
2 2013-10-10 00:00:00 3
3 2013-10-11 00:00:00 4
4 2013-10-11 00:00:00 5
5 2013-10-11 00:00:00 6
In [5]: g = df.groupby('DATE')
In [8]: key = g.groups.keys()[0]
In [9]: key
Out[9]: numpy.datetime64('2013-10-09T20:00:00.000000000-0400')
In [10]: g.indices
Out[10]:
{1381363200000000000L: array([0, 1, 2]),
1381449600000000000L: array([3, 4, 5])}
In [11]: g.get_group(key.astype('i8'))
Out[11]:
DATE VAL
0 2013-10-10 00:00:00 1
1 2013-10-10 00:00:00 2
2 2013-10-10 00:00:00 3
so works, but not very friendly
in addition on windows, the following is needed for the selection to succeed