BUG: cov buggy when having NaT in column (original) (raw)
Pandas version checks
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
df = DataFrame({ "a": [1, 2, 3], # "b": [pd.Timestamp("1970-01-01 00:00:00.000000001"), pd.Timestamp("1970-01-01 00:00:00.000000002"), pd.NaT], "b": [1, 2, np.nan], "c": [1, 2, 3], }) df.cov()
Issue Description
If I understand this correctly, both calculations should be equivalent. The np.nan case returns
a b c
a 1.0 0.5 1.0
b 0.5 0.5 0.5
c 1.0 0.5 1.0
while the NaT case returns
a b c
a 1.000000e+00 -4.611686e+18 1.000000e+00
b -4.611686e+18 2.835686e+37 -4.611686e+18
c 1.000000e+00 -4.611686e+18 1.000000e+00
Both are equivalent without any missing values
Expected Behavior
Same result for both
Installed Versions
main