BUG: pd.read_excel with engine "xlrd" fails when a cell contains NaN/inf · Issue #54564 · pandas-dev/pandas (original) (raw)

Pandas version checks

Reproducible Example

import tempfile from pathlib import Path

import numpy as np import pandas as pd

xlwt is just needed to conveniently create a test-case here

import xlwt

inp = np.r_[:3,np.nan].reshape(2,2) print(d) wb = xlwt.Workbook() ws = wb.add_sheet('Sheet') for (i,j),v in np.ndenumerate(inp): ws.write(i,j,v) with tempfile.TemporaryDirectory() as tdir: fn = str(Path(tdir)/".xls") wb.save(fn) out = pd.read_excel(fn, engine="xlrd")

Issue Description

Note that a very similar issue was reported previously: #33853.
However, that one relaed to the openpyxl engine and was thus closed as to be fixed upstream.
It appears that pandas does however vendor xlrd (and there is no issue tracker on the xlrd repo), so I believe this issue belongs here.

pd.read_excel with engine="xlrd" (as required to read xls files) fails when the input document contains infinity values:

...
File ~/.pyenv/versions/3.11.3/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/pandas/io/excel/_xlrd.py:109, in XlrdReader.get_sheet_data.<locals>._parse_cell(cell_contents, cell_typ)
    105     cell_contents = bool(cell_contents)
    106 elif cell_typ == XL_CELL_NUMBER:
    107     # GH5394 - Excel 'numbers' are always floats
    108     # it's a minimal perf hit and less surprising
--> 109     val = int(cell_contents)
    110     if val == cell_contents:
    111         cell_contents = val

ValueError: cannot convert float NaN to integer

Expected Behavior

pd.read_excel should succeed.

Installed Versions

INSTALLED VERSIONS

commit : 0f43794
python : 3.11.3.final.0
python-bits : 64
OS : Darwin
OS-release : 22.5.0
Version : Darwin Kernel Version 22.5.0: Thu Jun 8 22:22:20 PDT 2023; root:xnu-8796.121.3~7/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : de_CH.UTF-8
LANG : en_GB.UTF-8
LOCALE : de_CH.UTF-8

pandas : 2.0.3
numpy : 1.23.5
pytz : 2023.3
dateutil : 2.8.2
setuptools : 65.5.0
pip : 23.1.2
Cython : 0.29.34
pytest : 7.3.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 3.1.2
lxml.etree : None
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.12.0
pandas_datareader: None
bs4 : 4.12.2
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.7.1
numba : 0.57.0
numexpr : 2.8.4
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.1
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : 2023.4.2
xlrd : 2.0.1
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None