BUG: pandas 2.2 read_csv(engine="c") leaks memory when code uses np.nan · Issue #57039 · pandas-dev/pandas (original) (raw)
Pandas version checks
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of pandas.
- I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import numpy as np
import pandas as pd
pcp = np.ones((2700, 6100), dtype=np.float64)
Comment the following line out, and the memory leak goes away
pcp[pcp < 0] = np.nan
for _ in range(1000): pd.read_csv("example.txt", engine="c")
Issue Description
I upgraded my env to pandas 2.2 and my previously working script that does thousands of read_csv
calls failed with OOM. I trimmed everything down and to my amazement, found that the memory leak is triggered by the code usage of np.nan
. The above will use 3.2GB of RSS with np.nan
used, 160 MB when not. I can't believe this is even possible :) Switching to engine="python" and there is no leak.
I can reproduce this on a clean conda-forge install mamba create -n repro python=3.11 numpy pandas
on linux64.
Expected Behavior
No leak or small/manageable memory leaks with each read_csv
call.
Installed Versions
/opt/miniconda3/envs/prod/lib/python3.11/site-packages/_distutils_hack/init.py:33: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
INSTALLED VERSIONS
commit : f538741
python : 3.11.7.final.0
python-bits : 64
OS : Linux
OS-release : 5.14.0-410.el9.x86_64
Version : #1 SMP PREEMPT_DYNAMIC Thu Jan 18 20:27:59 UTC 2024
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.0
numpy : 1.26.3
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 69.0.3
pip : 23.3.2
Cython : 3.0.7
pytest : 7.4.4
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 3.1.9
lxml.etree : 5.1.0
html5lib : None
pymysql : None
psycopg2 : 2.9.9
jinja2 : 3.1.3
IPython : 8.20.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2023.12.2
gcsfs : None
matplotlib : 3.8.2
numba : 0.58.1
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 14.0.2
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : 2023.12.2
scipy : 1.12.0
sqlalchemy : 2.0.25
tables : None
tabulate : None
xarray : 2024.1.0
xlrd : 2.0.1
zstandard : None
tzdata : 2023.4
qtpy : 2.4.1
pyqt5 : None