BUG: Wrong kurtosis outcome due to inadequate fix to previous issues (original) (raw)

Pandas version checks

Reproducible Example

import polars as pl import pandas as pd import numpy as np import scipy.stats as st

data = np.array([-2.05191341e-05, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -4.10391103e-05, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00])

print(pl.Series(data).kurtosis()) print(pd.Series(data).kurt()) print(st.kurtosis(data))

Issue Description

The output of pandas kurtosis function is incorrect.

After simple debugging I found a comment at core/nanops.py line 1360, in function nankurt,
saying to fix #18044 it manually zeros out values less than 1e-14, which is in any way improper.
This affects whatever data comes with not much variance but lots of data.

Expected Behavior

Output of provided example:

14.916104870028523
0.0
14.916104870028551

Expected output: roughly 14.9161 for unbiased (pandas's default behaviour) is correct.

Installed Versions

Details

INSTALLED VERSIONS

commit : bdc79c1
python : 3.10.13.final.0
python-bits : 64
OS : Linux
OS-release : 5.19.0-1010-nvidia-lowlatency
Version : #10-Ubuntu SMP PREEMPT_DYNAMIC Wed Apr 26 00:40:27 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.2.1
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.8.2
setuptools : 65.5.0
pip : 24.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.22.1
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.2.0
gcsfs : None
matplotlib : 3.8.3
numba : 0.59.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 15.0.0
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.12.0
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None