BUG: .convert_dtypes(dtype_backend="pyarrow") strips timezone from tz-aware pyarrow timestamp Series · Issue #60237 · pandas-dev/pandas (original) (raw)

Pandas version checks

Reproducible Example

import pandas as pd s = pd.Series(pd.to_datetime(range(5), utc=True, unit="h"), dtype="timestamp[ns, tz=UTC][pyarrow]") s 0 1970-01-01 00:00:00+00:00 1 1970-01-01 01:00:00+00:00 2 1970-01-01 02:00:00+00:00 3 1970-01-01 03:00:00+00:00 4 1970-01-01 04:00:00+00:00 dtype: timestamp[ns, tz=UTC][pyarrow] s.convert_dtypes(dtype_backend="pyarrow") 0 1970-01-01 00:00:00 1 1970-01-01 01:00:00 2 1970-01-01 02:00:00 3 1970-01-01 03:00:00 4 1970-01-01 04:00:00 dtype: timestamp[ns][pyarrow]

Issue Description

Calling .convert_dtypes(dtype_backend="pyarrow") on a Series that is already a timezone aware pyarrow timestamp dtype strips the timezone information.

Testing on older versions, this seems to be a regression introduced sometime between versions 2.0.3 and 2.1.0rc0

Expected Behavior

No change should be made to the dtype

Installed Versions

INSTALLED VERSIONS

commit : 3f7bc81
python : 3.12.2
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19045
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : English_United States.1252

pandas : 3.0.0.dev0+1654.g3f7bc81ae6
numpy : 2.1.3
dateutil : 2.9.0.post0
pip : 24.3.1
Cython : None
sphinx : None
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : None
lxml.etree : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
psycopg2 : None
pymysql : None
pyarrow : 18.0.0
pyreadstat : None
pytest : None
python-calamine : None
pytz : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2024.2
qtpy : None
pyqt5 : None