COMPAT: rename isnull -> isna, notnull -> notna by jreback · Pull Request #16972 · pandas-dev/pandas (original) (raw)
@@ -36,7 +36,7 @@ When / why does data become missing?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some might quibble over our usage of *missing*. By "missing" we simply mean
**null** or "not present for whatever reason". Many data sets simply arrive with
**na** or "not present for whatever reason". Many data sets simply arrive with
missing data, either because it exists and was not collected or it never
existed. For example, in a collection of financial time series, some of the time
series might start on different dates. Thus, values prior to the start date
@@ -63,27 +63,27 @@ to handling missing data. While ``NaN`` is the default missing value marker for
reasons of computational speed and convenience, we need to be able to easily
detect this value with data of different types: floating point, integer,
boolean, and general object. In many cases, however, the Python ``None`` will
arise and we wish to also consider that "missing" or "null".
arise and we wish to also consider that "missing" or "na".
.. note::
Prior to version v0.10.0 ``inf`` and ``-inf`` were also
considered to be "null" in computations. This is no longer the case by
default; use the ``mode.use_inf_as_null`` option to recover it.
considered to be "na" in computations. This is no longer the case by
default; use the ``mode.use_inf_as_na`` option to recover it.
.. _missing.isnull:
.. _missing.isna:
To make detecting missing values easier (and across different array dtypes),
pandas provides the :func:`~pandas.core.common.isnull` and
:func:`~pandas.core.common.notnull` functions, which are also methods on
pandas provides the :func:`isna` and
:func:`notna` functions, which are also methods on
``Series`` and ``DataFrame`` objects:
.. ipython:: python
df2['one']
pd.isnull(df2['one'])
df2['four'].notnull()
df2.isnull()
pd.isna(df2['one'])
df2['four'].notna()
df2.isna()
.. warning::
@@ -206,7 +206,7 @@ with missing data.
Filling missing values: fillna
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The **fillna** function can "fill in" NA values with non-null data in a couple
The **fillna** function can "fill in" NA values with non-na data in a couple
of ways, which we illustrate:
**Replace NA with a scalar value**
@@ -220,7 +220,7 @@ of ways, which we illustrate:
**Fill gaps forward or backward**
Using the same filling arguments as :ref:`reindexing <basics.reindexing>`, we
can propagate non-null values forward or backward:
can propagate non-na values forward or backward:
.. ipython:: python
@@ -288,7 +288,7 @@ a Series in this case.
.. ipython:: python
dff.where(pd.notnull(dff), dff.mean(), axis='columns')
dff.where(pd.notna(dff), dff.mean(), axis='columns')
.. _missing_data.dropna: