GitHub - rapidsai/cudf: cuDF - GPU DataFrame Library (original) (raw)

cuDF - A GPU-accelerated DataFrame library for tabular data processing

cuDF (pronounced "KOO-dee-eff") is an Apache 2.0 licensed, GPU-accelerated DataFrame library for tabular data processing. The cuDF library is one part of the RAPIDS GPU Accelerated Data Science suite of libraries.

About

cuDF is composed of multiple libraries including:

Notable projects that use cuDF include:

Installation

System Requirements

Operating System, GPU driver, and supported CUDA version information can be found at the RAPIDS Installation Guide

pip

A stable release of each cudf library is available on PyPI. You will need to match the major version number of your installed CUDA version with a -cu## suffix when installing from PyPI.

A development version of each library is available as a nightly release by including the -i https://pypi.anaconda.org/rapidsai-wheels-nightly/simple index.

CUDA 13

pip install libcudf-cu13 pip install pylibcudf-cu13 pip install cudf-cu13 pip install cudf-polars-cu13 pip install dask-cudf-cu13

CUDA 12

pip install libcudf-cu12 pip install pylibcudf-cu12 pip install cudf-cu12 pip install cudf-polars-cu12 pip install dask-cudf-cu12

conda

A stable release of each cudf library is available to be installed with the conda package manager by specifying the -c rapidsai channel.

A development version of each library is available as a nightly release by specifying the -c rapidsai-nightly channel instead.

conda install -c rapidsai libcudf conda install -c rapidsai pylibcudf conda install -c rapidsai cudf conda install -c rapidsai cudf-polars conda install -c rapidsai dask-cudf

source

To install cuDF from source, please follow the contribution guide detailing how to setup the build environment.

Examples

The following examples showcase reading a parquet file, dropping missing rows with a null value, and performing a groupby aggregation on the data.

cudf

import cudf and the APIs are largely similar to pandas.

import cudf

df = cudf.read_parquet("data.parquet") df.dropna().groupby(["A", "B"]).mean()

cudf.pandas

With a Python file containing pandas code:

import pandas as pd

df = cudf.read_parquet("data.parquet") df.dropna().groupby(["A", "B"]).mean()

Use cudf.pandas by invoking python with -m cudf.pandas

$ python -m cudf.pandas script.py

If running the pandas code in an interactive Jupyter environment, call %load_ext cudf.pandas before importing pandas.

In [1]: %load_ext cudf.pandas

In [2]: import pandas as pd

In [3]: df = cudf.read_parquet("data.parquet")

In [4]: df.dropna().groupby(["A", "B"]).mean()

cudf-polars

Using Polars' lazy API, call collect with engine="gpu" to run the operation on the GPU

import polars as pl

lf = pl.scan_parquet("data.parquet") lf.drop_nulls().group_by(["A", "B"]).mean().collect(engine="gpu")

Questions and Discussion

For bug reports or feature requests, please file an issue on the GitHub issue tracker.

For questions or discussion about cuDF and GPU data processing, feel free to post in the RAPIDS Slack workspace.

Contributing

cuDF is open to contributions from the community! Please see our guide for contributing to cuDF for more information.