GitHub - satijalab/sctransform: R package for modeling single cell UMI expression data using regularized negative binomial regression (original) (raw)

sctransform

R package for normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression

The sctransform package was developed by Christoph Hafemeister in Rahul Satija's lab at the New York Genome Center and described in Hafemeister and Satija, Genome Biology 2019. Recent updates are described in (Choudhary and Satija, Genome Biology, 2022). Core functionality of this package has been integrated into Seurat, an R package designed for QC, analysis, and exploration of single cell RNA-seq data.

Quick start

Installation:

Install sctransform from CRAN

install.packages("sctransform")

Or the development version from GitHub:

remotes::install_github("satijalab/sctransform", ref="develop")

Running sctransform:

Runnning sctransform on a UMI matrix

normalized_data <- sctransform::vst(umi_count_matrix)$y

v1 regularization

normalized_data <- sctransform::vst(umi_count_matrix, vst.flavor="v1")$y

Runnning sctransform on a Seurat object

seurat_object <- Seurat::SCTransform(seurat_object)

v1 regularization

seurat_object <- Seurat::SCTransform(seurat_object, vst.flavor="v1")

Help

For usage examples see vignettes in inst/doc or use the built-in help after installation
?sctransform::vst

Available vignettes:

Please use the issue tracker if you encounter a problem

References