GitHub - st3v3nmw/sourcerer-mcp: MCP for semantic code search & navigation that reduces token waste (original) (raw)

Sourcerer MCP 🧙

An MCP server for semantic code search & navigation that helps AI agents work efficiently without burning through costly tokens. Instead of reading entire files, agents can search conceptually and jump directly to the specific functions, classes, and code chunks they need.

Demo

asciicast

Requirements

Installation

Go

go install github.com/st3v3nmw/sourcerer-mcp/cmd/sourcerer@latest

Homebrew

brew tap st3v3nmw/tap brew install st3v3nmw/tap/sourcerer

Configuration

Claude Code

claude mcp add sourcerer -e OPENAI_API_KEY=your-openai-api-key -e SOURCERER_WORKSPACE_ROOT=$(pwd) -- sourcerer

mcp.json

{ "mcpServers": { "sourcerer": { "command": "sourcerer", "env": { "OPENAI_API_KEY": "your-openai-api-key", "SOURCERER_WORKSPACE_ROOT": "/path/to/your/project" } } } }

How it Works

Sourcerer 🧙 builds a semantic search index of your codebase:

1. Code Parsing & Chunking

2. File System Integration

3. Vector Database

4. MCP Tools

This approach allows AI agents to find relevant code without reading entire files, dramatically reducing token usage and cognitive load.

Supported Languages

Language support requires writing Tree-sitter queries to identify functions, classes, interfaces, and other code structures for each language.

Supported: Go, JavaScript, Markdown, Python, TypeScript

Planned: C, C++, Java, Ruby, Rust, and others

Contributing

All contributions welcome! See CONTRIBUTING.md.

$ ls @stephenmwangi.com
- gh:st3v3nmw/obsidian-spaced-repetition
- gh:st3v3nmw/lsfr