GitHub - stemangiola/tidyseurat: Seurat meets tidyverse. The best of both worlds. (original) (raw)
tidyseurat - part of tidytranscriptomics
Brings Seurat to the tidyverse!
website:stemangiola.github.io/tidyseurat/
Please also have a look at
- tidyseurat for tidy single-cell RNA sequencing analysis
- tidySummarizedExperimentfor tidy bulk RNA sequencing analysis
- tidybulk for tidy bulk RNA-seq analysis
- nanny for tidy high-level data analysis and manipulation
- tidygate for adding custom gate information to your tibble
- tidyHeatmap for heatmaps produced with tidy principles
visual cue
Introduction
tidyseurat provides a bridge between the Seurat single-cell package [@butler2018integrating; @stuart2019comprehensive] and the tidyverse [@wickham2019welcome]. It creates an invisible layer that enables viewing the Seurat object as a tidyverse tibble, and provides Seurat-compatible dplyr, tidyr, ggplot and plotly functions.
Functions/utilities available
Seurat-compatible Functions | Description |
---|---|
all |
tidyverse Packages | Description |
---|---|
dplyr | All dplyr APIs like for any tibble |
tidyr | All tidyr APIs like for any tibble |
ggplot2 | ggplot like for any tibble |
plotly | plot_ly like for any tibble |
Utilities | Description |
---|---|
tidy | Add tidyseurat invisible layer over a Seurat object |
as_tibble | Convert cell-wise information to a tbl_df |
join_features | Add feature-wise information, returns a tbl_df |
aggregate_cells | Aggregate cell gene-transcription abundance as pseudobulk tissue |
Installation
From CRAN
install.packages("tidyseurat")
From Github (development)
devtools::install_github("stemangiola/tidyseurat")
library(dplyr) library(tidyr) library(purrr) library(magrittr) library(ggplot2) library(Seurat) library(tidyseurat)
Create tidyseurat
, the best of both worlds!
This is a seurat object but it is evaluated as tibble. So it is fully compatible both with Seurat and tidyverse APIs.
pbmc_small = SeuratObject::pbmc_small
It looks like a tibble
## # A Seurat-tibble abstraction: 80 × 15
## # [90mFeatures=230 | Cells=80 | Active assay=RNA | Assays=RNA[0m
## .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
## <chr> <fct> <dbl> <int> <fct> <fct> <chr>
## 1 ATGC… SeuratPro… 70 47 0 A g2
## 2 CATG… SeuratPro… 85 52 0 A g1
## 3 GAAC… SeuratPro… 87 50 1 B g2
## 4 TGAC… SeuratPro… 127 56 0 A g2
## 5 AGTC… SeuratPro… 173 53 0 A g2
## 6 TCTG… SeuratPro… 70 48 0 A g1
## 7 TGGT… SeuratPro… 64 36 0 A g1
## 8 GCAG… SeuratPro… 72 45 0 A g1
## 9 GATA… SeuratPro… 52 36 0 A g1
## 10 AATG… SeuratPro… 100 41 0 A g1
## # ℹ 70 more rows
## # ℹ 8 more variables: RNA_snn_res.1 <fct>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>,
## # PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl>
But it is a Seurat object after all
## $RNA
## Assay data with 230 features for 80 cells
## Top 10 variable features:
## PPBP, IGLL5, VDAC3, CD1C, AKR1C3, PF4, MYL9, GNLY, TREML1, CA2
Preliminary plots
Set colours and theme for plots.
Use colourblind-friendly colours
friendly_cols <- c("#88CCEE", "#CC6677", "#DDCC77", "#117733", "#332288", "#AA4499", "#44AA99", "#999933", "#882255", "#661100", "#6699CC")
Set theme
my_theme <- list( scale_fill_manual(values = friendly_cols), scale_color_manual(values = friendly_cols), theme_bw() + theme( panel.border = element_blank(), axis.line = element_line(), panel.grid.major = element_line(size = 0.2), panel.grid.minor = element_line(size = 0.1), text = element_text(size = 12), legend.position = "bottom", aspect.ratio = 1, strip.background = element_blank(), axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)), axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)) ) )
We can treat pbmc_small
effectively as a normal tibble for plotting.
Here we plot number of features per cell.
pbmc_small %>% ggplot(aes(nFeature_RNA, fill = groups)) + geom_histogram() + my_theme
Here we plot total features per cell.
pbmc_small %>% ggplot(aes(groups, nCount_RNA, fill = groups)) + geom_boxplot(outlier.shape = NA) + geom_jitter(width = 0.1) + my_theme
Here we plot abundance of two features for each group.
pbmc_small %>% join_features(features = c("HLA-DRA", "LYZ")) %>% ggplot(aes(groups, .abundance_RNA + 1, fill = groups)) + geom_boxplot(outlier.shape = NA) + geom_jitter(aes(size = nCount_RNA), alpha = 0.5, width = 0.2) + scale_y_log10() + my_theme
Preprocess the dataset
Also you can treat the object as Seurat object and proceed with data processing.
pbmc_small_pca <- pbmc_small %>% SCTransform(verbose = FALSE) %>% FindVariableFeatures(verbose = FALSE) %>% RunPCA(verbose = FALSE)
pbmc_small_pca
## # A Seurat-tibble abstraction: 80 × 17
## # [90mFeatures=220 | Cells=80 | Active assay=SCT | Assays=RNA, SCT[0m
## .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
## <chr> <fct> <dbl> <int> <fct> <fct> <chr>
## 1 ATGC… SeuratPro… 70 47 0 A g2
## 2 CATG… SeuratPro… 85 52 0 A g1
## 3 GAAC… SeuratPro… 87 50 1 B g2
## 4 TGAC… SeuratPro… 127 56 0 A g2
## 5 AGTC… SeuratPro… 173 53 0 A g2
## 6 TCTG… SeuratPro… 70 48 0 A g1
## 7 TGGT… SeuratPro… 64 36 0 A g1
## 8 GCAG… SeuratPro… 72 45 0 A g1
## 9 GATA… SeuratPro… 52 36 0 A g1
## 10 AATG… SeuratPro… 100 41 0 A g1
## # ℹ 70 more rows
## # ℹ 10 more variables: RNA_snn_res.1 <fct>, nCount_SCT <dbl>,
## # nFeature_SCT <int>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>,
## # PC_5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl>
If a tool is not included in the tidyseurat collection, we can useas_tibble
to permanently convert tidyseurat
into tibble.
pbmc_small_pca %>% as_tibble() %>% select(contains("PC"), everything()) %>% GGally::ggpairs(columns = 1:5, ggplot2::aes(colour = groups)) + my_theme
Identify clusters
We proceed with cluster identification with Seurat.
pbmc_small_cluster <- pbmc_small_pca %>% FindNeighbors(verbose = FALSE) %>% FindClusters(method = "igraph", verbose = FALSE)
pbmc_small_cluster
## # A Seurat-tibble abstraction: 80 × 19
## # [90mFeatures=220 | Cells=80 | Active assay=SCT | Assays=RNA, SCT[0m
## .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
## <chr> <fct> <dbl> <int> <fct> <fct> <chr>
## 1 ATGC… SeuratPro… 70 47 0 A g2
## 2 CATG… SeuratPro… 85 52 0 A g1
## 3 GAAC… SeuratPro… 87 50 1 B g2
## 4 TGAC… SeuratPro… 127 56 0 A g2
## 5 AGTC… SeuratPro… 173 53 0 A g2
## 6 TCTG… SeuratPro… 70 48 0 A g1
## 7 TGGT… SeuratPro… 64 36 0 A g1
## 8 GCAG… SeuratPro… 72 45 0 A g1
## 9 GATA… SeuratPro… 52 36 0 A g1
## 10 AATG… SeuratPro… 100 41 0 A g1
## # ℹ 70 more rows
## # ℹ 12 more variables: RNA_snn_res.1 <fct>, nCount_SCT <dbl>,
## # nFeature_SCT <int>, SCT_snn_res.0.8 <fct>, seurat_clusters <fct>,
## # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
## # tSNE_2 <dbl>
Now we can interrogate the object as if it was a regular tibble data frame.
pbmc_small_cluster %>% count(groups, seurat_clusters)
## # A tibble: 6 × 3
## groups seurat_clusters n
## <chr> <fct> <int>
## 1 g1 0 23
## 2 g1 1 17
## 3 g1 2 4
## 4 g2 0 17
## 5 g2 1 13
## 6 g2 2 6
We can identify cluster markers using Seurat.
Identify top 10 markers per cluster
markers <- pbmc_small_cluster %>% FindAllMarkers(only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25) %>% group_by(cluster) %>% top_n(10, avg_log2FC)
Plot heatmap
pbmc_small_cluster %>% DoHeatmap( features = markers$gene, group.colors = friendly_cols )
Reduce dimensions
We can calculate the first 3 UMAP dimensions using the Seurat framework.
pbmc_small_UMAP <- pbmc_small_cluster %>% RunUMAP(reduction = "pca", dims = 1:15, n.components = 3L)
And we can plot them using 3D plot using plotly.
pbmc_small_UMAP %>%
plot_ly(
x = ~`UMAP_1, y = ~
UMAP_2, z = ~
UMAP_3`,
color = ~seurat_clusters,
colors = friendly_cols[1:4]
)
screenshot plotly
Cell type prediction
We can infer cell type identities using SingleR [@aran2019reference] and manipulate the output using tidyverse.
Get cell type reference data
blueprint <- celldex::BlueprintEncodeData()
Infer cell identities
cell_type_df <- GetAssayData(pbmc_small_UMAP, slot = 'counts', assay = "SCT") %>% log1p() %>% Matrix::Matrix(sparse = TRUE) %>% SingleR::SingleR( ref = blueprint, labels = blueprint$label.main, method = "single" ) %>% as.data.frame() %>% as_tibble(rownames = "cell") %>% select(cell, first.labels)
Join UMAP and cell type info
pbmc_small_cell_type <- pbmc_small_UMAP %>% left_join(cell_type_df, by = "cell")
Reorder columns
pbmc_small_cell_type %>% select(cell, first.labels, everything())
We can easily summarise the results. For example, we can see how cell type classification overlaps with cluster classification.
pbmc_small_cell_type %>% count(seurat_clusters, first.labels)
We can easily reshape the data for building information-rich faceted plots.
pbmc_small_cell_type %>%
Reshape and add classifier column
pivot_longer( cols = c(seurat_clusters, first.labels), names_to = "classifier", values_to = "label" ) %>%
UMAP plots for cell type and cluster
ggplot(aes(UMAP_1, UMAP_2, color = label)) + geom_point() + facet_wrap(~classifier) + my_theme
We can easily plot gene correlation per cell category, adding multi-layer annotations.
pbmc_small_cell_type %>%
Add some mitochondrial abundance values
mutate(mitochondrial = rnorm(n())) %>%
Plot correlation
join_features(features = c("CST3", "LYZ"), shape = "wide") %>% ggplot(aes(CST3 + 1, LYZ + 1, color = groups, size = mitochondrial)) + geom_point() + facet_wrap(~first.labels, scales = "free") + scale_x_log10() + scale_y_log10() + my_theme
Nested analyses
A powerful tool we can use with tidyseurat is nest
. We can easily perform independent analyses on subsets of the dataset. First we classify cell types in lymphoid and myeloid; then, nest based on the new classification
pbmc_small_nested <-
pbmc_small_cell_type %>%
filter(first.labels != "Erythrocytes") %>%
mutate(cell_class = if_else(first.labels
%in% c("Macrophages", "Monocytes"), "myeloid", "lymphoid")) %>%
nest(data = -cell_class)
pbmc_small_nested
Now we can independently for the lymphoid and myeloid subsets (i) find variable features, (ii) reduce dimensions, and (iii) cluster using both tidyverse and Seurat seamlessly.
pbmc_small_nested_reanalysed <- pbmc_small_nested %>% mutate(data = map( data, ~ .x %>% FindVariableFeatures(verbose = FALSE) %>% RunPCA(npcs = 10, verbose = FALSE) %>% FindNeighbors(verbose = FALSE) %>% FindClusters(method = "igraph", verbose = FALSE) %>% RunUMAP(reduction = "pca", dims = 1:10, n.components = 3L, verbose = FALSE) ))
pbmc_small_nested_reanalysed
Now we can unnest and plot the new classification.
pbmc_small_nested_reanalysed %>%
Convert to tibble otherwise Seurat drops reduced dimensions when unifying data sets.
mutate(data = map(data, ~ .x %>% as_tibble())) %>% unnest(data) %>%
Define unique clusters
unite("cluster", c(cell_class, seurat_clusters), remove = FALSE) %>%
Plotting
ggplot(aes(UMAP_1, UMAP_2, color = cluster)) + geom_point() + facet_wrap(~cell_class) + my_theme
Aggregating cells
Sometimes, it is necessary to aggregate the gene-transcript abundance from a group of cells into a single value. For example, when comparing groups of cells across different samples with fixed-effect models.
In tidyseurat, cell aggregation can be achieved using theaggregate_cells
function.
pbmc_small %>% aggregate_cells(groups, assays = "RNA")