GitHub - unina-sfere/funcharts: The goal of funcharts is to provide control charts for functional data. (original) (raw)
funcharts
The goal of funcharts
is to provide control charts for the statistical process monitoring of multivariate functional data densely observed on one-dimensional intervals. The package is thoroughly illustrated in the paper of Capezza et al. (2023). The package provides the methodologies proposed in Colosimo and Pacella (2010), Capezza et al. (2020), Centofanti et al. (2021), Capezza et al. (2024a), and Capezza et al. (2024b). Moreover, this package provides a new class mfd
for multivariate functional data that is a wrapper of the class fd
of the package fda
. See thevignette("mfd", package = "funcharts").
In particular:
- Colosimo and Pacella (2010) propose control charts for monitoring functional data based on functional principal component analysis.vignette("colosimo2010", package = "funcharts")
- Capezza et al. (2020) propose control charts for monitoring a scalar response variable and functional covariates using scalar-on-function regression. See thevignette("capezza2020", package = "funcharts").
- Centofanti et al. (2021) propose the functional regression control chart (FRCC), i.e. control charts for monitoring a functional response variable conditionally on multivariate functional covariates. See thevignette("centofanti2021", package = "funcharts").
- Capezza et al. (2024a) propose the adaptive multivariate functional EWMA (AMFEWMA) control chart.
- Capezza et al. (2024b) propose the robust multivariate functional control chart (RoMFCC).
- Centofanti et al. (2024) propose the functional real-time monitoring (FRTM) control chart.
Installation
You can install the CRAN version of the R package funcharts
by doing:
install.packages("funcharts")
You can install the development version from GitHub with:
install.packages("devtools")
devtools::install_github("unina-sfere/funcharts")
References
- Capezza C, Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2023) funcharts: control charts for multivariate functional data in R. Journal of Quality Technology, doi:10.1080/00224065.2023.2219012.
- Capezza C, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2020) Control charts for monitoring ship operating conditions and CO2 emissions based on scalar-on-function regression.Applied Stochastic Models in Business and Industry, 36(3):477–500, doi:10.1002/asmb.2507
- Capezza, C., Capizzi, G., Centofanti, F., Lepore, A., Palumbo, B. (2024a) An Adaptive Multivariate Functional EWMA Control Chart. To appear in Journal of Quality Technology, doi:https://doi.org/10.1080/00224065.2024.2383674.
- Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024b) Robust Multivariate Functional Control Charts. Technometrics, 66(4):531–547, doi:10.1080/00401706.2024.2327346.
- Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control Chart. Technometrics, 63(3), 281–294, doi:10.1080/00401706.2020.1753581.
- Centofanti, F., A. Lepore, M. Kulahci, and M. P. Spooner (2024). Real-time monitoring of functional data. Accepted for publication in_Journal of Quality Technology_.
- Colosimo BM, Pacella, M. (2010) A comparison study of control charts for statistical monitoring of functional data. International Journal of Production Research, 48(6), 1575-1601, doi:10.1080/00207540802662888.