bit package - github.com/yourbasic/bit - Go Packages (original) (raw)
Package bit provides a bit array implementation.
Bit set ¶
A bit set, or bit array, is an efficient set data structure that consists of an array of 64-bit words. Because it uses bit-level parallelism, limits memory access, and efficiently uses the data cache, a bit set often outperforms other data structures.
Tutorial ¶
The Basics example shows how to create, combine, compare and print bit sets.
Primes contains a short and simple, but still efficient, implementation of a prime number sieve.
Union is a more advanced example demonstrating how to build an efficient variadic Union function using the SetOr method.
Create, combine, compare and print bit sets.
package main
import ( "fmt" "github.com/yourbasic/bit" )
func main() { // Add all elements in the range [0, 100) to the empty set. A := new(bit.Set).AddRange(0, 100) // {0..99}
// Create a new set containing the two elements 0 and 200,
// and then add all elements in the range [50, 150) to the set.
B := bit.New(0, 200).AddRange(50, 150) // {0 50..149 200}
// Compute the symmetric difference A △ B.
X := A.Xor(B)
// Compute A △ B as (A ∖ B) ∪ (B ∖ A).
Y := A.AndNot(B).Or(B.AndNot(A))
// Compare the results.
if X.Equal(Y) {
fmt.Println(X)
}}
Output:
{1..49 100..149 200}
Create the set of all primes less than n in O(n log log n) time. Try the code with n equal to a few hundred millions and be pleasantly surprised.
package main
import ( "fmt" "github.com/yourbasic/bit" "math" )
func main() { // Sieve of Eratosthenes const n = 50 sieve := bit.New().AddRange(2, n) sqrtN := int(math.Sqrt(n)) for p := 2; p <= sqrtN; p = sieve.Next(p) { for k := p * p; k < n; k += p { sieve.Delete(k) } } fmt.Println(sieve) }
Output:
{2 3 5 7 11 13 17 19 23 29 31 37 41 43 47}
Implement an efficient variadic Union function using SetOr.
package main
import ( "fmt" "github.com/yourbasic/bit" )
// Union returns the union of the given sets. func Union(s ...*bit.Set) *bit.Set { // Optimization: allocate initital set with adequate capacity. max := -1 for _, x := range s { if x.Size() > 0 && x.Max() > max { // Max is not defined for the empty set. max = x.Max() } } res := bit.New(max) // A negative number will not be included in the set.
for _, x := range s {
res.SetOr(res, x) // Reuses memory.
}
return res}
// Implement an efficient variadic Union function using SetOr. func main() { a, b, c := bit.New(1, 2), bit.New(2, 3), bit.New(5) fmt.Println(Union(a, b, c)) }
Output:
{1..3 5}
func Count(w uint64) intdeprecated
func LeadingZeros(w uint64) intdeprecated
func TrailingZeros(w uint64) intdeprecated
- func (s *Set) Add(n int) *Set
- func (s *Set) AddRange(m, n int) *Set
- func (s1 *Set) And(s2 *Set) *Set
- func (s1 *Set) AndNot(s2 *Set) *Set
- func (s *Set) Contains(n int) bool
- func (s *Set) Delete(n int) *Set
- func (s *Set) DeleteRange(m, n int) *Set
- func (s *Set) Empty() bool
- func (s1 *Set) Equal(s2 *Set) bool
- func (s *Set) Max() int
- func (s *Set) Next(m int) int
- func (s1 *Set) Or(s2 *Set) *Set
- func (s *Set) Prev(m int) int
- func (s *Set) Set(s1 *Set) *Set
- func (s *Set) SetAnd(s1, s2 *Set) *Set
- func (s *Set) SetAndNot(s1, s2 *Set) *Set
- func (s *Set) SetOr(s1, s2 *Set) *Set
- func (s *Set) SetXor(s1, s2 *Set) *Set
- func (s *Set) Size() int
- func (s *Set) String() string
- func (s1 *Set) Subset(s2 *Set) bool
- func (s *Set) Visit(do func(n int) (skip bool)) (aborted bool)
- func (s1 *Set) Xor(s2 *Set) *Set
const (
MaxInt = 1<<(BitsPerWord-1) - 1
MinInt = -MaxInt - 1
MaxUint = 1<<BitsPerWord - 1
)
Implementation-specific integer limit values.
BitsPerWord is the implementation-specific size of int and uint in bits.
This section is empty.
Count returns the number of nonzero bits in w.
Deprecated: In Go 1.9 this function is available in package math/bits as OnesCount64.
LeadingZeros returns the number of leading zero bits in w; it returns 64 when w is zero.
Deprecated: In Go 1.9 this function is available in package math/bits as LeadingZeros64.
TrailingZeros returns the number of trailing zero bits in w; it returns 64 when w is zero.
Deprecated: In Go 1.9 this function is available in package math/bits as TrailingZeros64.
Set represents a mutable set of non-negative integers. The zero value is an empty set ready to use. A set occupies approximately n bits, where n is the maximum value that has been stored in the set.
New creates a new set with the given elements. Negative numbers are not included in the set.
package main
import ( "fmt" "github.com/yourbasic/bit" )
func main() { fmt.Println(bit.New(0, 1, 10, 10, -1)) }
Output:
{0 1 10}
Add adds n to s and returns a pointer to the updated set. A negative n will not be added.
func (s *Set) AddRange(m, n int) *Set
AddRange adds all integers from m to n-1 to s and returns a pointer to the updated set. Negative numbers will not be added.
func (*Set) And ¶
func (s1 *Set) And(s2 *Set) *Set
And creates a new set that consists of all elements that belong to both s1 and s2.
func (*Set) AndNot ¶
func (s1 *Set) AndNot(s2 *Set) *Set
AndNot creates a new set that consists of all elements that belong to s1, but not to s2.
Contains tells if n is an element of the set.
func (s *Set) Delete(n int) *Set
Delete removes n from s and returns a pointer to the updated set.
func (s *Set) DeleteRange(m, n int) *Set
DeleteRange removes all integers from m to n-1 from s and returns a pointer to the updated set.
Empty tells if the set is empty.
func (s1 *Set) Equal(s2 *Set) bool
Equal tells if s1 and s2 contain the same elements.
Max returns the maximum element of the set; it panics if the set is empty.
Next returns the next element n, n > m, in the set, or -1 if there is no such element.
func (s1 *Set) Or(s2 *Set) *Set
Or creates a new set that contains all elements that belong to either s1 or s2.
Prev returns the previous element n, n < m, in the set, or -1 if there is no such element.
func (s *Set) Set(s1 *Set) *Set
Set sets s to s1 and then returns a pointer to the updated set s.
func (*Set) SetAnd ¶
func (s *Set) SetAnd(s1, s2 *Set) *Set
SetAnd sets s to the intersection s1 ∩ s2 and then returns a pointer to s.
func (*Set) SetAndNot ¶
func (s *Set) SetAndNot(s1, s2 *Set) *Set
SetAndNot sets s to the set difference s1 ∖ s2 and then returns a pointer to s.
func (s *Set) SetOr(s1, s2 *Set) *Set
SetOr sets s to the union s1 ∪ s2 and then returns a pointer to s.
func (s *Set) SetXor(s1, s2 *Set) *Set
SetXor sets s to the symmetric difference A ∆ B = (A ∪ B) ∖ (A ∩ B) and then returns a pointer to s.
Size returns the number of elements in the set. This method scans the set; to check if a set is empty, consider using the more efficient Empty method.
String returns a string representation of the set. The elements are listed in ascending order. Runs of at least three consecutive elements from a to b are given as a..b.
package main
import ( "fmt" "github.com/yourbasic/bit" )
func main() { fmt.Println(bit.New(1, 2, 6, 5, 3)) }
Output:
{1..3 5 6}
func (s1 *Set) Subset(s2 *Set) bool
Subset tells if s1 is a subset of s2.
func (s *Set) Visit(do func(n int) (skip bool)) (aborted bool)
Visit calls the do function for each element of s in numerical order. If do returns true, Visit returns immediately, skipping any remaining elements, and returns true. It is safe for do to add or delete elements e, e ≤ n. The behavior of Visit is undefined if do changes the set in any other way.
Compute the sum of all elements in a set.
package main
import ( "fmt" "github.com/yourbasic/bit" )
func main() { s := bit.New(1, 2, 3, 4) sum := 0 s.Visit(func(n int) (skip bool) { sum += n return }) fmt.Println("sum", s, "=", sum) }
Output:
sum {1..4} = 10
Abort an iteration in mid-flight.
package main
import ( "fmt" "github.com/yourbasic/bit" )
func main() { s := bit.New(2, 3, 5, 7, 11, 13)
// Print all single digit numbers in s.
s.Visit(func(n int) (skip bool) {
if n >= 10 {
skip = true
return
}
fmt.Print(n, " ")
return
})}
Output:
2 3 5 7
func (s1 *Set) Xor(s2 *Set) *Set
Xor creates a new set that contains all elements that belong to either s1 or s2, but not to both.