Jaspher Ewany | University of Greenwich (original) (raw)
A microbiologist and entomologist. Main areas of interest are: insect pathogens and microbial pest control, ecology and physiology of entomopathogenic fungi, biopesticide and Integrated Pest Management (IPM).
less
Uploads
Papers by Jaspher Ewany
Plants, 2020
Sustainable agricultural intensification employs alternatives to synthetic insecticides for pest ... more Sustainable agricultural intensification employs alternatives to synthetic insecticides for pest management, but these are not always a direct replacement. Botanical insecticides, for example, have rapid knockdown but are highly labile and while biological pesticides are more persistent, they are slow acting. To mitigate these shortcomings, we combined the entomopathogenic fungus (EPF) Metarhizium anisopliae with pyrethrum and evaluated their efficacy against the bean aphid, Aphis fabae. To ascertain higher trophic effects, we presented these treatments to the parasitoid, Aphidius colemani, on an aphid infested plant in a Y-tube olfactometer and measured their preferences. Aphid mortality was significantly higher than controls when exposed to EPF or pyrethrum but was greater still when exposed to a combination of both treatments, indicating an additive effect. This highlights the potential for applications of pyrethrum at lower doses, or the use of less refined products with lower p...
www.mdpi.com/journal/plants, 2020
Sustainable agricultural intensification employs alternatives to synthetic insecticides for pest ... more Sustainable agricultural intensification employs alternatives to synthetic insecticides for pest management, but these are not always a direct replacement. Botanical insecticides, for example, have rapid knockdown but are highly labile and while biological pesticides are more persistent, they are slow acting. To mitigate these shortcomings, we combined the entomopathogenic fungus (EPF) Metarhizium anisopliae with pyrethrum and evaluated their efficacy against the bean aphid, Aphis fabae. To ascertain higher trophic effects, we presented these treatments to the parasitoid, Aphidius colemani, on an aphid infested plant in a Y-tube olfactometer and measured their preferences. Aphid mortality was significantly higher than controls when exposed to EPF or pyrethrum but was greater still when exposed to a combination of both treatments, indicating an additive effect. This highlights the potential for applications of pyrethrum at lower doses, or the use of less refined products with lower production costs to achieve control. While parasitoids were deterred by aphid infested plants treated with EPF, no preference was observed with the combination pesticide, which provides insight into the importance that both application technique and timing may play in the success of this new technology. These results indicate the potential for biorational pesticides that combine botanicals with EPF.
Plants, 2020
Sustainable agricultural intensification employs alternatives to synthetic insecticides for pest ... more Sustainable agricultural intensification employs alternatives to synthetic insecticides for pest management, but these are not always a direct replacement. Botanical insecticides, for example, have rapid knockdown but are highly labile and while biological pesticides are more persistent, they are slow acting. To mitigate these shortcomings, we combined the entomopathogenic fungus (EPF) Metarhizium anisopliae with pyrethrum and evaluated their efficacy against the bean aphid, Aphis fabae. To ascertain higher trophic effects, we presented these treatments to the parasitoid, Aphidius colemani, on an aphid infested plant in a Y-tube olfactometer and measured their preferences. Aphid mortality was significantly higher than controls when exposed to EPF or pyrethrum but was greater still when exposed to a combination of both treatments, indicating an additive effect. This highlights the potential for applications of pyrethrum at lower doses, or the use of less refined products with lower p...
www.mdpi.com/journal/plants, 2020
Sustainable agricultural intensification employs alternatives to synthetic insecticides for pest ... more Sustainable agricultural intensification employs alternatives to synthetic insecticides for pest management, but these are not always a direct replacement. Botanical insecticides, for example, have rapid knockdown but are highly labile and while biological pesticides are more persistent, they are slow acting. To mitigate these shortcomings, we combined the entomopathogenic fungus (EPF) Metarhizium anisopliae with pyrethrum and evaluated their efficacy against the bean aphid, Aphis fabae. To ascertain higher trophic effects, we presented these treatments to the parasitoid, Aphidius colemani, on an aphid infested plant in a Y-tube olfactometer and measured their preferences. Aphid mortality was significantly higher than controls when exposed to EPF or pyrethrum but was greater still when exposed to a combination of both treatments, indicating an additive effect. This highlights the potential for applications of pyrethrum at lower doses, or the use of less refined products with lower production costs to achieve control. While parasitoids were deterred by aphid infested plants treated with EPF, no preference was observed with the combination pesticide, which provides insight into the importance that both application technique and timing may play in the success of this new technology. These results indicate the potential for biorational pesticides that combine botanicals with EPF.