KF Cao | Guangxi University (original) (raw)
Papers by KF Cao
Plant Biology
Photosynthetic heat tolerance (PHT) is a key predictor of plant response to climate change. Mangr... more Photosynthetic heat tolerance (PHT) is a key predictor of plant response to climate change. Mangroves are an ecologically and economically important coastal plant community comprised of trees growing at their physiological limits. Mangroves are currently impacted by global warming, yet the PHT of mangrove trees is poorly understood. In this study, we provide the first assessment of PHT in 13 Asian mangrove species, based on the critical temperature that causes the initial damage (TCrit) and the temperature that causes 50% damage (T50) to photosystem II. We tested the hypotheses that the PHT in mangroves is: (i) correlated with climatic niche and leaf traits, and (ii) higher than in plants from other tropical ecosystems. Our results demonstrated correlations between PHT and multiple key climate variables, the palisade to spongy mesophyll ratio and the leaf area. The two most heat‐sensitive species were Kandelia obovata and Avicennia marina. Our study also revealed that mangrove trees...
National audienceThe foothills of Himalayan mountain ranges are areas where plant biodiversity is... more National audienceThe foothills of Himalayan mountain ranges are areas where plant biodiversity is extremely rich due to the semi-tropical climate and the wide variety of soil substrates. Landslides and erosion are frequent because of natural causes e.g. mountain orogeny and earthquakes, but are largely due to anthropological causes e.g. deforestation by logging and agriculture, road and dam construction. The aim of this study is to propose a new approach for slope stabilisation, by focussing on the careful management of degradation hotspots as well as biodiversity hotspots, and understanding better the processes leading to the formation of each type. We will study how plant roots reinforce soil, with an emphasis on rooting strategies of plants growing under strong ecological and mechanical constraints e.g. landslides and erosion. Our field site is in the Salween River valley, Yunnan province, southern China. We are currently examining root and shoot structure as well as mechanics of...
Soil Biology and Biochemistry, 2021
Plant Physiology and Biochemistry, 2020
Ying yong sheng tai xue bao = The journal of applied ecology / Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban, 2004
Stomatal characteristics and its plasticity in leaves of four canopy species, Shorea chinensis, P... more Stomatal characteristics and its plasticity in leaves of four canopy species, Shorea chinensis, Pometia tomentosa, Anthocephalus chinensis, Calophyllun polyanthum and three middle-layer species, Barringtonia pendula, Garcinia hanburyi, Horsfieldia tetratepala acclimated to different light conditions (8%, 25%, 50% and 100% of full sunlight) for more than one year were surveyed. All plant's stomata were distributed on the abaxial of leaves. Pometia tomentosa and Barringtonia pendula had higher stomatal density, and the guard cell length of Anthocephalus chinensis and Calophyllun polyanthum were much greater than others'. Stomatal density and stomatal index (ratio of stomatal numbers to epidermal cell number) were increased with growth irradiance increased, while numbers of stomata per leaf were higher in the low than the high relative PFD, and stomatal conductance of leaves was the highest in the 50% of sunlight except for Anthocephalus chinensis. The relative PFD had little e...
Plant Ecology, 1999
Beech forests occur widely in the mountains on the main island of Japan. Wind storm is the major ... more Beech forests occur widely in the mountains on the main island of Japan. Wind storm is the major regime that causes canopy disturbances in these forests. Fagus crenata Blume is a dominant, and Acer mono Maxim., also a canopy species, co-occurs in these forests. It has been suggested that A. mono is less shade-tolerant than F. crenata. Using dendrochronological data, this study
Forest Ecology and Management, 2020
Woody debris represents a substantial reservoir of carbon in forests. Disentangling the effects o... more Woody debris represents a substantial reservoir of carbon in forests. Disentangling the effects of factors affecting wood decomposition rates is therefore important. We examined the abiotic and biotic factors affecting wood decomposition across a disturbance gradient from mature forest to open land in a tropical montane site in Xishuangbanna, SW China. Wood logs (n = 280) of two native species with contrasting wood specific gravity (WSG), Castanopsis mekongensis (0.75) and Litsea cubeba (0.42), were exposed on the ground for three years. For each log, WSG was monitored at intervals by taking cores from top-half (up) and bottom-half (down) of the log. Mass loss was measured at the end of the experiment. WSG loss rates were similar across the disturbance gradient and the species effect varied with core position. For Castanopsis, which had higher initial WSG and wood N concentration and much thicker bark, up-cores had consistently higher WSG loss over the study period. This species also had substantially higher WSG loss for upcores, but interspecific difference among down-cores was small. For mass loss, there was a complex interaction between species, habitat and the presence of termites. Litsea with low initial WSG experienced approximately twofold higher mass loss in the absence of termites, but the difference between species was smaller in the presence of termites. Both species experienced higher mass loss in open habitats than in forests, but the termite effect was smaller in open habitats especially for Litsea. There was no interspecific difference in susceptibility to termite infestation, but infestation rates were higher in regenerating forests and open land than in mature forest. WSG loss explained 0% and 19% of mass loss variation in Listea and Castanopsis, respectively, in absence of termites and 0% for both in the presence of termites. Afterlife effects of wood functional traits interact with abiotic conditions and decomposition processes (microbial decomposition, macro-organisms (termites), photo-degradation) in a complex manner to determine wood decomposition rates. WSG loss is not a reliable predictor of mass loss. These results have important implications for understanding the carbon cycle in tropical landscapes that are undergoing anthropogenic disturbance.
Photosynthetica, 2015
Lianas perform better than co-occurring trees in secondary forests or disturbed areas. Lianas and... more Lianas perform better than co-occurring trees in secondary forests or disturbed areas. Lianas and trees differ strikingly in water use strategy, which may result in a significant difference in photosynthetic light use between both growth forms. However, the difference in the photosynthetic efficiency and light energy dissipation between these two growth forms is poorly understood. Moreover, photorespiration is an important mechanism of photoprotection under conditions of high light. In this study, we used Bridelia stipularis (Linn.) Bl. (liana) and Strophioblachia fimbricalyx Boerl. (tree) in order to measure the response curves of the gas exchange and photosynthetic electron flow to the incident light gradients and intercellular CO2 concentration, as well as the hydraulic conductivity. We tested whether the photochemical efficiency and photorespiration differed between both growth forms. Our results clearly demonstrated that B. stipularis possessed a significantly higher stem and leaf specific hydraulic conductivity, total electron flow, and maximum rate of ribulose-1,5bisphosphate regeneration compared to the sympatric tree S. fimbricalyx. Correspondingly, B. stipularis exhibited a significantly higher photochemical quenching coefficient and electron flow to photorespiration relative to S. fimbricalyx under saturating light levels. We suggested that photorespiration might play an important role in photoprotection for both species under high light, but particularly for B. stipularis. These findings could enrich our knowledge of the superior photosynthetic and growth performance of lianas over the co-occurring trees.
Plant & cell physiology, 2010
Although cyclic electron flow (CEF) is essential for repair of PSII, it is unclear whether the CE... more Although cyclic electron flow (CEF) is essential for repair of PSII, it is unclear whether the CEF is stimulated and what the role of stability of PSI is during the recovery. In order to explore these two questions, mature leaves of Dalbergia odorifera were treated with the chilling temperature of 4°C under a photosynthetic flux density (PFD) of 650 μmol m(-2) s(-1) for 2 h and then were transferred to 25°C under a PFD of 100 μmol m(-2) s(-1) for recovery. The maximum quantum yield of PSII (F(v)/F(m)), the maximum photo-oxidizable P700 (P(m)), the energy distribution in PSII and the redox state of P700 at 25°C under a PFD of 100 μmol m(-2) s(-1) were determined before and after chilling treatment and during subsequent recovery. We found that the CEF was significantly stimulated during the recovery after photodamage. There is a significant positive correlation between stimulation of CEF and photodamage of PSII during recovery. Our results indicated that CEF was significantly stimulat...
Tree Physiology, 2008
Diurnal and seasonal changes in gas exchange and chlorophyll fluorescence of the uppermost-canopy... more Diurnal and seasonal changes in gas exchange and chlorophyll fluorescence of the uppermost-canopy leaves of four evergreen dipterocarp species were measured on clear days. The trees, that were growing in a plantation stand in southern Yunnan, China, had canopy heights ranging from 17 to 22 m. In the rainy season, Dipterocarpus retusus Bl. had higher photosynthetic capacity (A max) than Hopea hainanensis Merr. et Chun, Parashorea chinensis Wang Hsie and Vatica xishuangbannaensis G.D. Tao et J.H. Zhang (17.7 versus 13.9, 11.8 and 7.7 lmol m À2 s À1 , respectively). In the dry season, A max in all species decreased by 52-64%, apparent quantum yield and dark respiration rate decreased in three species, and light saturation point decreased in two species. During the diurnal courses, all species exhibited sustained photosynthetic depression from midmorning onward in both seasons. The trees were able to regulate light energy allocation dynamically between photochemistry and heat dissipation during the day, with reduced actual photochemistry and increased heat dissipation in the dry season. Photorespiration played an important role in photoprotection in all species in both seasons, as indicated by a continuous increase in photorespiration rate in the morning toward midday and a high proportion of electron flow (about 30-65% of total electron flow) allocated to oxygenation for most of the day. None of the species suffered irreversible photoinhibition, even in the dry season. The sustained photosynthetic depression in the uppermost-canopy leaves of these species could be a protective response to prevent excessive water loss and consequent catastrophic leaf hydraulic dysfunction.
Tree Physiology, 2013
Drought stress can induce closure of stomata, thus leading to photoinhibition. The effects of pro... more Drought stress can induce closure of stomata, thus leading to photoinhibition. The effects of prolonged severe drought under natural growing conditions on photosystem I (PSI), photosystem II (PSII) and cyclic electron flow (CEF) in drought-tolerant tree species are unclear. In spring 2010, southwestern China confronted severe drought that lasted several months. Using three dominant evergreen species, Cleistanthus sumatranus (Miq.) Muell. Arg. (Euphorbiaceae), Celtis philippensis Bl. (Ulmaceae) and Pistacia weinmannifolia J. Poisson ex Franch. (Anacardiaceae) that are native to a tropical limestone forest, we investigated the influence of this stress on PSI and PSII activities as well as light energy distribution in the PSII and P700 redox state. By the end of the drought period, predawn leaf water potential (Ψ pd) largely declined in each species, especially in C. sumatranus. Photosystem I activity strongly decreased in the three species, especially in C. sumatranus which showed a decrease of 65%. The maximum quantum yield of PSII after dark adaptation remained stable in P. weinmannifolia and C. philippensis but significantly decreased in C. sumatranus. Light response curves indicated that both linear electron flow and non-photochemical quenching were severely inhibited in C. sumatranus along with disappearance of CEF, resulting in deleterious excess light energy in PSII. We conclude that PSI is more sensitive than PSII to prolonged severe drought in these three drought-tolerant species, and CEF is essential for photoprotection in them.
Plant Biology
Photosynthetic heat tolerance (PHT) is a key predictor of plant response to climate change. Mangr... more Photosynthetic heat tolerance (PHT) is a key predictor of plant response to climate change. Mangroves are an ecologically and economically important coastal plant community comprised of trees growing at their physiological limits. Mangroves are currently impacted by global warming, yet the PHT of mangrove trees is poorly understood. In this study, we provide the first assessment of PHT in 13 Asian mangrove species, based on the critical temperature that causes the initial damage (TCrit) and the temperature that causes 50% damage (T50) to photosystem II. We tested the hypotheses that the PHT in mangroves is: (i) correlated with climatic niche and leaf traits, and (ii) higher than in plants from other tropical ecosystems. Our results demonstrated correlations between PHT and multiple key climate variables, the palisade to spongy mesophyll ratio and the leaf area. The two most heat‐sensitive species were Kandelia obovata and Avicennia marina. Our study also revealed that mangrove trees...
National audienceThe foothills of Himalayan mountain ranges are areas where plant biodiversity is... more National audienceThe foothills of Himalayan mountain ranges are areas where plant biodiversity is extremely rich due to the semi-tropical climate and the wide variety of soil substrates. Landslides and erosion are frequent because of natural causes e.g. mountain orogeny and earthquakes, but are largely due to anthropological causes e.g. deforestation by logging and agriculture, road and dam construction. The aim of this study is to propose a new approach for slope stabilisation, by focussing on the careful management of degradation hotspots as well as biodiversity hotspots, and understanding better the processes leading to the formation of each type. We will study how plant roots reinforce soil, with an emphasis on rooting strategies of plants growing under strong ecological and mechanical constraints e.g. landslides and erosion. Our field site is in the Salween River valley, Yunnan province, southern China. We are currently examining root and shoot structure as well as mechanics of...
Soil Biology and Biochemistry, 2021
Plant Physiology and Biochemistry, 2020
Ying yong sheng tai xue bao = The journal of applied ecology / Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban, 2004
Stomatal characteristics and its plasticity in leaves of four canopy species, Shorea chinensis, P... more Stomatal characteristics and its plasticity in leaves of four canopy species, Shorea chinensis, Pometia tomentosa, Anthocephalus chinensis, Calophyllun polyanthum and three middle-layer species, Barringtonia pendula, Garcinia hanburyi, Horsfieldia tetratepala acclimated to different light conditions (8%, 25%, 50% and 100% of full sunlight) for more than one year were surveyed. All plant's stomata were distributed on the abaxial of leaves. Pometia tomentosa and Barringtonia pendula had higher stomatal density, and the guard cell length of Anthocephalus chinensis and Calophyllun polyanthum were much greater than others'. Stomatal density and stomatal index (ratio of stomatal numbers to epidermal cell number) were increased with growth irradiance increased, while numbers of stomata per leaf were higher in the low than the high relative PFD, and stomatal conductance of leaves was the highest in the 50% of sunlight except for Anthocephalus chinensis. The relative PFD had little e...
Plant Ecology, 1999
Beech forests occur widely in the mountains on the main island of Japan. Wind storm is the major ... more Beech forests occur widely in the mountains on the main island of Japan. Wind storm is the major regime that causes canopy disturbances in these forests. Fagus crenata Blume is a dominant, and Acer mono Maxim., also a canopy species, co-occurs in these forests. It has been suggested that A. mono is less shade-tolerant than F. crenata. Using dendrochronological data, this study
Forest Ecology and Management, 2020
Woody debris represents a substantial reservoir of carbon in forests. Disentangling the effects o... more Woody debris represents a substantial reservoir of carbon in forests. Disentangling the effects of factors affecting wood decomposition rates is therefore important. We examined the abiotic and biotic factors affecting wood decomposition across a disturbance gradient from mature forest to open land in a tropical montane site in Xishuangbanna, SW China. Wood logs (n = 280) of two native species with contrasting wood specific gravity (WSG), Castanopsis mekongensis (0.75) and Litsea cubeba (0.42), were exposed on the ground for three years. For each log, WSG was monitored at intervals by taking cores from top-half (up) and bottom-half (down) of the log. Mass loss was measured at the end of the experiment. WSG loss rates were similar across the disturbance gradient and the species effect varied with core position. For Castanopsis, which had higher initial WSG and wood N concentration and much thicker bark, up-cores had consistently higher WSG loss over the study period. This species also had substantially higher WSG loss for upcores, but interspecific difference among down-cores was small. For mass loss, there was a complex interaction between species, habitat and the presence of termites. Litsea with low initial WSG experienced approximately twofold higher mass loss in the absence of termites, but the difference between species was smaller in the presence of termites. Both species experienced higher mass loss in open habitats than in forests, but the termite effect was smaller in open habitats especially for Litsea. There was no interspecific difference in susceptibility to termite infestation, but infestation rates were higher in regenerating forests and open land than in mature forest. WSG loss explained 0% and 19% of mass loss variation in Listea and Castanopsis, respectively, in absence of termites and 0% for both in the presence of termites. Afterlife effects of wood functional traits interact with abiotic conditions and decomposition processes (microbial decomposition, macro-organisms (termites), photo-degradation) in a complex manner to determine wood decomposition rates. WSG loss is not a reliable predictor of mass loss. These results have important implications for understanding the carbon cycle in tropical landscapes that are undergoing anthropogenic disturbance.
Photosynthetica, 2015
Lianas perform better than co-occurring trees in secondary forests or disturbed areas. Lianas and... more Lianas perform better than co-occurring trees in secondary forests or disturbed areas. Lianas and trees differ strikingly in water use strategy, which may result in a significant difference in photosynthetic light use between both growth forms. However, the difference in the photosynthetic efficiency and light energy dissipation between these two growth forms is poorly understood. Moreover, photorespiration is an important mechanism of photoprotection under conditions of high light. In this study, we used Bridelia stipularis (Linn.) Bl. (liana) and Strophioblachia fimbricalyx Boerl. (tree) in order to measure the response curves of the gas exchange and photosynthetic electron flow to the incident light gradients and intercellular CO2 concentration, as well as the hydraulic conductivity. We tested whether the photochemical efficiency and photorespiration differed between both growth forms. Our results clearly demonstrated that B. stipularis possessed a significantly higher stem and leaf specific hydraulic conductivity, total electron flow, and maximum rate of ribulose-1,5bisphosphate regeneration compared to the sympatric tree S. fimbricalyx. Correspondingly, B. stipularis exhibited a significantly higher photochemical quenching coefficient and electron flow to photorespiration relative to S. fimbricalyx under saturating light levels. We suggested that photorespiration might play an important role in photoprotection for both species under high light, but particularly for B. stipularis. These findings could enrich our knowledge of the superior photosynthetic and growth performance of lianas over the co-occurring trees.
Plant & cell physiology, 2010
Although cyclic electron flow (CEF) is essential for repair of PSII, it is unclear whether the CE... more Although cyclic electron flow (CEF) is essential for repair of PSII, it is unclear whether the CEF is stimulated and what the role of stability of PSI is during the recovery. In order to explore these two questions, mature leaves of Dalbergia odorifera were treated with the chilling temperature of 4°C under a photosynthetic flux density (PFD) of 650 μmol m(-2) s(-1) for 2 h and then were transferred to 25°C under a PFD of 100 μmol m(-2) s(-1) for recovery. The maximum quantum yield of PSII (F(v)/F(m)), the maximum photo-oxidizable P700 (P(m)), the energy distribution in PSII and the redox state of P700 at 25°C under a PFD of 100 μmol m(-2) s(-1) were determined before and after chilling treatment and during subsequent recovery. We found that the CEF was significantly stimulated during the recovery after photodamage. There is a significant positive correlation between stimulation of CEF and photodamage of PSII during recovery. Our results indicated that CEF was significantly stimulat...
Tree Physiology, 2008
Diurnal and seasonal changes in gas exchange and chlorophyll fluorescence of the uppermost-canopy... more Diurnal and seasonal changes in gas exchange and chlorophyll fluorescence of the uppermost-canopy leaves of four evergreen dipterocarp species were measured on clear days. The trees, that were growing in a plantation stand in southern Yunnan, China, had canopy heights ranging from 17 to 22 m. In the rainy season, Dipterocarpus retusus Bl. had higher photosynthetic capacity (A max) than Hopea hainanensis Merr. et Chun, Parashorea chinensis Wang Hsie and Vatica xishuangbannaensis G.D. Tao et J.H. Zhang (17.7 versus 13.9, 11.8 and 7.7 lmol m À2 s À1 , respectively). In the dry season, A max in all species decreased by 52-64%, apparent quantum yield and dark respiration rate decreased in three species, and light saturation point decreased in two species. During the diurnal courses, all species exhibited sustained photosynthetic depression from midmorning onward in both seasons. The trees were able to regulate light energy allocation dynamically between photochemistry and heat dissipation during the day, with reduced actual photochemistry and increased heat dissipation in the dry season. Photorespiration played an important role in photoprotection in all species in both seasons, as indicated by a continuous increase in photorespiration rate in the morning toward midday and a high proportion of electron flow (about 30-65% of total electron flow) allocated to oxygenation for most of the day. None of the species suffered irreversible photoinhibition, even in the dry season. The sustained photosynthetic depression in the uppermost-canopy leaves of these species could be a protective response to prevent excessive water loss and consequent catastrophic leaf hydraulic dysfunction.
Tree Physiology, 2013
Drought stress can induce closure of stomata, thus leading to photoinhibition. The effects of pro... more Drought stress can induce closure of stomata, thus leading to photoinhibition. The effects of prolonged severe drought under natural growing conditions on photosystem I (PSI), photosystem II (PSII) and cyclic electron flow (CEF) in drought-tolerant tree species are unclear. In spring 2010, southwestern China confronted severe drought that lasted several months. Using three dominant evergreen species, Cleistanthus sumatranus (Miq.) Muell. Arg. (Euphorbiaceae), Celtis philippensis Bl. (Ulmaceae) and Pistacia weinmannifolia J. Poisson ex Franch. (Anacardiaceae) that are native to a tropical limestone forest, we investigated the influence of this stress on PSI and PSII activities as well as light energy distribution in the PSII and P700 redox state. By the end of the drought period, predawn leaf water potential (Ψ pd) largely declined in each species, especially in C. sumatranus. Photosystem I activity strongly decreased in the three species, especially in C. sumatranus which showed a decrease of 65%. The maximum quantum yield of PSII after dark adaptation remained stable in P. weinmannifolia and C. philippensis but significantly decreased in C. sumatranus. Light response curves indicated that both linear electron flow and non-photochemical quenching were severely inhibited in C. sumatranus along with disappearance of CEF, resulting in deleterious excess light energy in PSII. We conclude that PSI is more sensitive than PSII to prolonged severe drought in these three drought-tolerant species, and CEF is essential for photoprotection in them.