Alessia Di Nardo | Harvard University (original) (raw)
Papers by Alessia Di Nardo
The EMBO Journal, 2007
Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, the... more Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, their function in the mammalian nervous system is unknown. Here, we provide evidence that in mouse brain profilin1 and profilin2 have distinct roles in regulating synaptic actin polymerization with profilin2 preferring a WAVE-complexmediated pathway. Mice lacking profilin2 show a block in synaptic actin polymerization in response to depolarization, which is accompanied by increased synaptic excitability of glutamatergic neurons due to higher vesicle exocytosis. These alterations in neurotransmitter release correlate with a hyperactivation of the striatum and enhanced novelty-seeking behavior in profilin2 mutant mice. Our results highlight a novel, profilin2-dependent pathway, regulating synaptic physiology, neuronal excitability, and complex behavior.
The Journal of cell …, Jan 1, 2003
euritogenesis, the first step of neuronal differentiation, takes place as nascent neurites bud fr... more euritogenesis, the first step of neuronal differentiation, takes place as nascent neurites bud from the immediate postmitotic neuronal soma. Little is known about the mechanisms underlying the dramatic morphological changes that characterize this event. Here, we show that RhoA activity plays a decisive role during neuritogenesis of cultured hippocampal neurons by recruiting and activating its specific kinase ROCK, which, in turn, complexes with profilin IIa. We establish that this previously uncharacter-N ized brain-specific actin-binding protein controls neurite sprouting by modifying actin stability, a function regulated by ROCK-mediated phosphorylation. Furthermore, we determine that this novel cascade is switched on or off by physiological stimuli. We propose that RhoA/ROCK/PIIamediated regulation of actin stability, shown to be essential for neuritogenesis, may constitute a central mechanism throughout neuronal differentiation.
Biochemistry, Jan 1, 1997
Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed... more Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopaminebinding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.
Journal of Cell …, Jan 1, 2000
Profilins are a conserved family of proteins participating in actin dynamics and cell motility. I... more Profilins are a conserved family of proteins participating in actin dynamics and cell motility. In the mouse, two profilin genes are known. Profilin I is expressed universally at high levels, while profilin II is expressed mainly in the brain. Here we describe the occurrence of two mouse profilin II isoforms, A and B, which are derived by alternative splicing. They are identical through residue 107 of the protein, but then have distinct C-terminal sequences. Profilin IIA binds to poly-L-proline and actin with high affinity similar to profilin I. Profilin IIB on the other hand does not bind to actin and the affinity for poly-L-proline is greatly diminished. However, tubulin was found to bind to GST-profilin IIB, and in vivo GFP-profilin IIB was recruited to spindles and asters during mitosis in HeLa cells. Our results indicate unexpected diversity in the functions of the profilin family of proteins, and suggest that in mouse profilin IIA is intimately involved in actin dynamics, while profilin IIB associates with other cytoskeletal components.
Genes & …, Jan 1, 2008
Axon formation is fundamental for brain development and function. TSC1 and TSC2 are two genes, mu... more Axon formation is fundamental for brain development and function. TSC1 and TSC2 are two genes, mutations in which cause tuberous sclerosis complex (TSC), a disease characterized by tumor predisposition and neurological abnormalities including epilepsy, mental retardation, and autism. Here we show that Tsc1 and Tsc2 have critical functions in mammalian axon formation and growth. Overexpression of Tsc1/Tsc2 suppresses axon formation, whereas a lack of Tsc1 or Tsc2 function induces ectopic axons in vitro and in the mouse brain. Tsc2 is phosphorylated and inhibited in the axon but not dendrites. Inactivation of Tsc1/Tsc2 promotes axonal growth, at least in part, via up-regulation of neuronal polarity SAD kinase, which is also elevated in cortical tubers of a TSC patient. Our results reveal key roles of TSC1/TSC2 in neuronal polarity, suggest a common pathway regulating polarization/growth in neurons and cell size in other tissues, and have implications for the understanding of the pathogenesis of TSC and associated neurological disorders and for axonal regeneration.
Journal of Biological Chemistry, Jan 1, 2006
Mammalian profilins are abundantly expressed actin monomerbinding proteins, highly conserved with... more Mammalian profilins are abundantly expressed actin monomerbinding proteins, highly conserved with respect to their affinities for G-actin, poly-L-proline, and phosphoinositides. Profilins associate with a large number of proline-rich proteins; the physiological significance and regulation of which is poorly understood. Here we show that profilin 2 associates with dynamin 1 via the C-terminal proline-rich domain of dynamin and thereby competes with the binding of SH3 ligands such as endophilin, amphiphysin, and Grb2, thus interfering with the assembly of the endocytic machinery. We also present a novel role for the brain-specific mouse profilin 2 as a regulator of membrane trafficking. Overexpression of profilin 2 inhibits endocytosis, whereas lack of profilin 2 in neurons results in an increase in endocytosis and membrane recycling. Phosphatidylinositol 4,5-bisphosphate releases profilin 2 from the profilin 2-dynamin 1 complex as well as from the profilin 2-actin complex, suggesting that profilin 2 is diverging the phosphoinositide signaling pathway to actin polymerization as well as endocytosis. . 2 The abbreviations used are: PtdInsP 2 , phosphatidylinositol 4,5-bisphosphate; VASP, vasodilator-stimulated phosphoprotein; GST, glutathione S-transferase; PBS, phosphate-buffered saline; PRD, proline-rich domain; FITC, fluorescein isothiocyanate; ELISA, enzyme-linked immunosorbent assay; BSA, bovine serum albumin; GTP␥S, guanosine 5Ј-3-O-(thio)triphosphate.
The EMBO …, Jan 1, 2007
Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, the... more Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, their function in the mammalian nervous system is unknown. Here, we provide evidence that in mouse brain profilin1 and profilin2 have distinct roles in regulating synaptic actin polymerization with profilin2 preferring a WAVE-complexmediated pathway. Mice lacking profilin2 show a block in synaptic actin polymerization in response to depolarization, which is accompanied by increased synaptic excitability of glutamatergic neurons due to higher vesicle exocytosis. These alterations in neurotransmitter release correlate with a hyperactivation of the striatum and enhanced novelty-seeking behavior in profilin2 mutant mice. Our results highlight a novel, profilin2-dependent pathway, regulating synaptic physiology, neuronal excitability, and complex behavior.
Proceedings of the …, Jan 1, 2005
The Journal of …, Jan 1, 2009
Tuberous Sclerosis Complex (TSC) is a neurogenetic disorder caused by loss-of-function mutations ... more Tuberous Sclerosis Complex (TSC) is a neurogenetic disorder caused by loss-of-function mutations in either the TSC1 or TSC2 genes and frequently results in prominent CNS manifestations including epilepsy, mental retardation, and autism spectrum disorder. The TSC1/TSC2 protein complex plays a major role in controlling the Ser/Thr kinase mTOR, which is a master regulator of protein synthesis and cell growth. In this study, we show that endoplasmic reticulum (ER) stress regulates TSC1/TSC2 complex to limit mTOR activity. In addition, Tsc2-deficient rat hippocampal neurons and brain lysates from a Tsc1-deficient mouse model both demonstrate elevated ER and oxidative stress. In Tsc2-deficient neurons, the expression of stress markers such as CHOP and HO-1 is increased, and this increase is completely reversed by the mTOR inhibitor rapamycin both in vitro and in vivo. Neurons lacking a functional TSC1/TSC2 complex have increased vulnerability to ER stress-induced cell death via the activation of the mitochondrial death pathway. Importantly, knockdown of CHOP reduces oxidative stress and apoptosis in Tsc2-deficient neurons. These observations indicate that ER stress modulates mTOR activity through the TSC protein complex and that ER stress is elevated in cells lacking this complex. They also suggest that some of the neuronal dysfunction and neurocognitive deficits seen in TSC patients may be due to ER and oxidative stress, and therefore potentially responsive to agents moderating these pathways.
Nature …, Jan 1, 2010
Tuberous sclerosis complex is a disease caused by mutations in the TSC1 or TSC2 genes, which enco... more Tuberous sclerosis complex is a disease caused by mutations in the TSC1 or TSC2 genes, which encode a protein complex that inhibits mTOR kinase signaling by inactivating the Rheb GTPase. Activation of mTOR promotes the formation of benign tumors in various organs while the mechanisms underlying the neurological symptoms of the disease remain largely unknown. Here, we report that in mice Tsc2 haploinsufficiency causes aberrant retinogeniculate projections that suggest defects in EphA receptor-dependent axon guidance. We also show that EphA receptor activation by ephrin-A ligands in neurons leads to inhibition of ERK1/2 kinase activity and decreased inhibition of Tsc2 by ERK1/2. Thus, ephrin stimulation inactivates the mTOR pathway by enhancing Tsc2 activity. Furthermore, Tsc2 deficiency and hyperactive Rheb constitutively activate mTOR and inhibit ephrin-induced growth cone collapse. Our results demonstrate that TSC2-Rheb-mTOR signaling cooperates with the ephrin-Eph receptor system to control axon guidance in the visual system.
The EMBO Journal, 2007
Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, the... more Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, their function in the mammalian nervous system is unknown. Here, we provide evidence that in mouse brain profilin1 and profilin2 have distinct roles in regulating synaptic actin polymerization with profilin2 preferring a WAVE-complexmediated pathway. Mice lacking profilin2 show a block in synaptic actin polymerization in response to depolarization, which is accompanied by increased synaptic excitability of glutamatergic neurons due to higher vesicle exocytosis. These alterations in neurotransmitter release correlate with a hyperactivation of the striatum and enhanced novelty-seeking behavior in profilin2 mutant mice. Our results highlight a novel, profilin2-dependent pathway, regulating synaptic physiology, neuronal excitability, and complex behavior.
The Journal of cell …, Jan 1, 2003
euritogenesis, the first step of neuronal differentiation, takes place as nascent neurites bud fr... more euritogenesis, the first step of neuronal differentiation, takes place as nascent neurites bud from the immediate postmitotic neuronal soma. Little is known about the mechanisms underlying the dramatic morphological changes that characterize this event. Here, we show that RhoA activity plays a decisive role during neuritogenesis of cultured hippocampal neurons by recruiting and activating its specific kinase ROCK, which, in turn, complexes with profilin IIa. We establish that this previously uncharacter-N ized brain-specific actin-binding protein controls neurite sprouting by modifying actin stability, a function regulated by ROCK-mediated phosphorylation. Furthermore, we determine that this novel cascade is switched on or off by physiological stimuli. We propose that RhoA/ROCK/PIIamediated regulation of actin stability, shown to be essential for neuritogenesis, may constitute a central mechanism throughout neuronal differentiation.
Biochemistry, Jan 1, 1997
Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed... more Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopaminebinding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.
Journal of Cell …, Jan 1, 2000
Profilins are a conserved family of proteins participating in actin dynamics and cell motility. I... more Profilins are a conserved family of proteins participating in actin dynamics and cell motility. In the mouse, two profilin genes are known. Profilin I is expressed universally at high levels, while profilin II is expressed mainly in the brain. Here we describe the occurrence of two mouse profilin II isoforms, A and B, which are derived by alternative splicing. They are identical through residue 107 of the protein, but then have distinct C-terminal sequences. Profilin IIA binds to poly-L-proline and actin with high affinity similar to profilin I. Profilin IIB on the other hand does not bind to actin and the affinity for poly-L-proline is greatly diminished. However, tubulin was found to bind to GST-profilin IIB, and in vivo GFP-profilin IIB was recruited to spindles and asters during mitosis in HeLa cells. Our results indicate unexpected diversity in the functions of the profilin family of proteins, and suggest that in mouse profilin IIA is intimately involved in actin dynamics, while profilin IIB associates with other cytoskeletal components.
Genes & …, Jan 1, 2008
Axon formation is fundamental for brain development and function. TSC1 and TSC2 are two genes, mu... more Axon formation is fundamental for brain development and function. TSC1 and TSC2 are two genes, mutations in which cause tuberous sclerosis complex (TSC), a disease characterized by tumor predisposition and neurological abnormalities including epilepsy, mental retardation, and autism. Here we show that Tsc1 and Tsc2 have critical functions in mammalian axon formation and growth. Overexpression of Tsc1/Tsc2 suppresses axon formation, whereas a lack of Tsc1 or Tsc2 function induces ectopic axons in vitro and in the mouse brain. Tsc2 is phosphorylated and inhibited in the axon but not dendrites. Inactivation of Tsc1/Tsc2 promotes axonal growth, at least in part, via up-regulation of neuronal polarity SAD kinase, which is also elevated in cortical tubers of a TSC patient. Our results reveal key roles of TSC1/TSC2 in neuronal polarity, suggest a common pathway regulating polarization/growth in neurons and cell size in other tissues, and have implications for the understanding of the pathogenesis of TSC and associated neurological disorders and for axonal regeneration.
Journal of Biological Chemistry, Jan 1, 2006
Mammalian profilins are abundantly expressed actin monomerbinding proteins, highly conserved with... more Mammalian profilins are abundantly expressed actin monomerbinding proteins, highly conserved with respect to their affinities for G-actin, poly-L-proline, and phosphoinositides. Profilins associate with a large number of proline-rich proteins; the physiological significance and regulation of which is poorly understood. Here we show that profilin 2 associates with dynamin 1 via the C-terminal proline-rich domain of dynamin and thereby competes with the binding of SH3 ligands such as endophilin, amphiphysin, and Grb2, thus interfering with the assembly of the endocytic machinery. We also present a novel role for the brain-specific mouse profilin 2 as a regulator of membrane trafficking. Overexpression of profilin 2 inhibits endocytosis, whereas lack of profilin 2 in neurons results in an increase in endocytosis and membrane recycling. Phosphatidylinositol 4,5-bisphosphate releases profilin 2 from the profilin 2-dynamin 1 complex as well as from the profilin 2-actin complex, suggesting that profilin 2 is diverging the phosphoinositide signaling pathway to actin polymerization as well as endocytosis. . 2 The abbreviations used are: PtdInsP 2 , phosphatidylinositol 4,5-bisphosphate; VASP, vasodilator-stimulated phosphoprotein; GST, glutathione S-transferase; PBS, phosphate-buffered saline; PRD, proline-rich domain; FITC, fluorescein isothiocyanate; ELISA, enzyme-linked immunosorbent assay; BSA, bovine serum albumin; GTP␥S, guanosine 5Ј-3-O-(thio)triphosphate.
The EMBO …, Jan 1, 2007
Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, the... more Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, their function in the mammalian nervous system is unknown. Here, we provide evidence that in mouse brain profilin1 and profilin2 have distinct roles in regulating synaptic actin polymerization with profilin2 preferring a WAVE-complexmediated pathway. Mice lacking profilin2 show a block in synaptic actin polymerization in response to depolarization, which is accompanied by increased synaptic excitability of glutamatergic neurons due to higher vesicle exocytosis. These alterations in neurotransmitter release correlate with a hyperactivation of the striatum and enhanced novelty-seeking behavior in profilin2 mutant mice. Our results highlight a novel, profilin2-dependent pathway, regulating synaptic physiology, neuronal excitability, and complex behavior.
Proceedings of the …, Jan 1, 2005
The Journal of …, Jan 1, 2009
Tuberous Sclerosis Complex (TSC) is a neurogenetic disorder caused by loss-of-function mutations ... more Tuberous Sclerosis Complex (TSC) is a neurogenetic disorder caused by loss-of-function mutations in either the TSC1 or TSC2 genes and frequently results in prominent CNS manifestations including epilepsy, mental retardation, and autism spectrum disorder. The TSC1/TSC2 protein complex plays a major role in controlling the Ser/Thr kinase mTOR, which is a master regulator of protein synthesis and cell growth. In this study, we show that endoplasmic reticulum (ER) stress regulates TSC1/TSC2 complex to limit mTOR activity. In addition, Tsc2-deficient rat hippocampal neurons and brain lysates from a Tsc1-deficient mouse model both demonstrate elevated ER and oxidative stress. In Tsc2-deficient neurons, the expression of stress markers such as CHOP and HO-1 is increased, and this increase is completely reversed by the mTOR inhibitor rapamycin both in vitro and in vivo. Neurons lacking a functional TSC1/TSC2 complex have increased vulnerability to ER stress-induced cell death via the activation of the mitochondrial death pathway. Importantly, knockdown of CHOP reduces oxidative stress and apoptosis in Tsc2-deficient neurons. These observations indicate that ER stress modulates mTOR activity through the TSC protein complex and that ER stress is elevated in cells lacking this complex. They also suggest that some of the neuronal dysfunction and neurocognitive deficits seen in TSC patients may be due to ER and oxidative stress, and therefore potentially responsive to agents moderating these pathways.
Nature …, Jan 1, 2010
Tuberous sclerosis complex is a disease caused by mutations in the TSC1 or TSC2 genes, which enco... more Tuberous sclerosis complex is a disease caused by mutations in the TSC1 or TSC2 genes, which encode a protein complex that inhibits mTOR kinase signaling by inactivating the Rheb GTPase. Activation of mTOR promotes the formation of benign tumors in various organs while the mechanisms underlying the neurological symptoms of the disease remain largely unknown. Here, we report that in mice Tsc2 haploinsufficiency causes aberrant retinogeniculate projections that suggest defects in EphA receptor-dependent axon guidance. We also show that EphA receptor activation by ephrin-A ligands in neurons leads to inhibition of ERK1/2 kinase activity and decreased inhibition of Tsc2 by ERK1/2. Thus, ephrin stimulation inactivates the mTOR pathway by enhancing Tsc2 activity. Furthermore, Tsc2 deficiency and hyperactive Rheb constitutively activate mTOR and inhibit ephrin-induced growth cone collapse. Our results demonstrate that TSC2-Rheb-mTOR signaling cooperates with the ephrin-Eph receptor system to control axon guidance in the visual system.