Analytical solution of nonlinear partial differential equations of physics (original) (raw)

  1. DIGITAL.CSIC
  2. Ciencia y Tecnologías Físicas
  3. Laboratorio de Investigación en Fluidodinámica y Tecnología de la Combustión (LIFTEC)
  4. (LIFTEC) Artículos

Por favor, use este identificador para citar o enlazar a este item:http://hdl.handle.net/10261/51176

COMPARTIR / EXPORTAR:

| logo citeas | García‐Olivares, A. (2003, June 1). Analytical solution of nonlinear partial differential equations of physics. Kybernetes. Emerald. http://doi.org/10.1108/03684920310463939 | | | --------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | |

Invitar a revisión por pares abierta

Título:
Autor: CSIC ORCID
Fecha de publicación: 2003
Editor: Emerald Group Publishing
Citación: Kybernetes 32: 548-560 (2003)
Resumen: A general method is proposed to approximate the analytical solution of any time-dependent partial differential equation with boundary conditions defined on the four sides of a rectangle. To ensure that the approximant satisfies the boundary conditions problem the differential operator is modified with one additional term which takes into account the effect of boundary conditions. Then the new problem can be directly integrated in the same way as an ordinary differential equation. In this work Adomian's decomposition method with analytic extension is used to obtain the first-order approximant to the solution of a test case. The result is an analytic approximation to the solution which is compatible with both the exact boundary conditions and the accuracy imposed in the whole domain. The solution obtained is compared with the analytic approximation obtained with a Tau-Legendre spectral method.
URI: http://hdl.handle.net/10261/51176
DOI: 10.1108/03684920310463939
Identificadores: doi: 10.1108/03684920310463939issn: 0368-492X
Aparece en las colecciones: (LIFTEC) Artículos
Ficheros en este ítem:

Mostrar el registro completo

Altmetric

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.