Sacha Bohler | Maastricht University, Faculty of Health Medicine and Life sciences (original) (raw)

Papers by Sacha Bohler

Research paper thumbnail of Transcriptomics analysis of human iPSC-derived dopaminergic neurons reveals a novel model for sporadic Parkinson’s disease

Molecular Psychiatry, Jun 20, 2022

Research paper thumbnail of Genes associated with Parkinson's disease respond to increasing polychlorinated biphenyl levels in the blood of healthy females

Toxicology Letters, Oct 1, 2018

Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly fou... more Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly found in human blood, that have been suggested to be linked to the occurrence of sporadic Parkinson's disease (PD). It has been reported that some non-coplanar PCBs accumulate in the brains of female PD patients. To improve our understanding of the association between PCB exposure and PD risk we have applied whole transcriptome gene expression analysis in blood cells from 594 PCB-exposed subjects (369 female, 225 male). Interestingly, we observe that in females, blood levels of non-coplanar PCBs appear to be associated with expression levels of PD-specific genes. However, no such association was detected in males. Among the 131 PD-specific genes affected, 39 have been shown to display similar changes in expression levels in the substantia nigra of deceased PD patients. Especially among the down-regulated genes, transcripts of genes involved in neurotransmitter vesicle-related functions were predominant.

Research paper thumbnail of Bulletin de l'Académie Lorraine des Sciences, N°50, 2011

Research paper thumbnail of The Effects of Ozone on Polar Leaf Processes: A Proteomics Approach

ABSTRACT After the industrial revolution of the 1700s and 1800s, and the subsequent industrializa... more ABSTRACT After the industrial revolution of the 1700s and 1800s, and the subsequent industrialization, many pollutants have accumulated in the atmosphere, mainly due to the use of coal and fossil fuels. Besides the primary pollutants such as nitrogen oxides and sulfur oxides, secondary oxides such as ozone started to accumulate. Nowadays, ozone is thethird gas involved in global climate change, but is also a major health risk for humans, and inducesconsiderable damage to vegetation. Starting in the 50s, ozone research was based on targeted studies. Nowadays, with the advent of global techniques such as transcriptomics and proteomics, new results can be produced in an unbiased way. In the thesis presented here, a proteomic study of the effects of ozone on poplar leaf processes was carried out. With the help of this technique, complemented with biochemical and physiological approaches and with morphological observations, it was possible to confirm previous results, but also to elaborate new hypotheses concerning the effects of ozone on poplar leaf metabolism. In parallel, studying the stress also allowed to clarify some of the changes that occur in metabolism during leaf development, under stress conditions and under control conditions. In this document, the procedures, results and conclusions obtained during this study are presented in detail.

Research paper thumbnail of Transcriptomics analysis of human iPSC-derived dopaminergic neurons reveals a novel model for sporadic Parkinson’s disease

Research paper thumbnail of Genes associated with Parkinson's disease respond to increasing polychlorinated biphenyl levels in the blood of healthy females

Environmental Pollution, 2019

Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly fou... more Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly found in human blood, that have been suggested to be linked to the occurrence of sporadic Parkinson's disease (PD). It has been reported that some non-coplanar PCBs accumulate in the brains of female PD patients. To improve our understanding of the association between PCB exposure and PD risk we have applied whole transcriptome gene expression analysis in blood cells from 594 PCB-exposed subjects (369 female, 225 male). Interestingly, we observe that in females, blood levels of non-coplanar PCBs appear to be associated with expression levels of PD-specific genes. However, no such association was detected in males. Among the 131 PD-specific genes affected, 39 have been shown to display similar changes in expression levels in the substantia nigra of deceased PD patients. Especially among the down-regulated genes, transcripts of genes involved in neurotransmitter vesicle-related functions were predominant.

Research paper thumbnail of Bulletin de l'Académie Lorraine des Sciences, N°50, 2011

Research paper thumbnail of Ozone-induced changes in the expression of glutamine synthetase isoforms in poplar leaves

Research paper thumbnail of The Effects of Ozone on Polar Leaf Processes: A Proteomics Approach

After the industrial revolution of the 1700s and 1800s, and the subsequent industrialization, man... more After the industrial revolution of the 1700s and 1800s, and the subsequent industrialization, many pollutants have accumulated in the atmosphere, mainly due to the use of coal and fossil fuels. Besides the primary pollutants such as nitrogen oxides and sulfur oxides, secondary oxides such as ozone started to accumulate. Nowadays, ozone is thethird gas involved in global climate change, but is also a major health risk for humans, and inducesconsiderable damage to vegetation. Starting in the 50s, ozone research was based on targeted studies. Nowadays, with the advent of global techniques such as transcriptomics and proteomics, new results can be produced in an unbiased way. In the thesis presented here, a proteomic study of the effects of ozone on poplar leaf processes was carried out. With the help of this technique, complemented with biochemical and physiological approaches and with morphological observations, it was possible to confirm previous results, but also to elaborate new hy...

Research paper thumbnail of A physiological and proteomic study of poplar leaves during ozone exposure combined with mild drought

Proteomics, 2013

The occurrence of high-ozone concentrations during drought episodes is common considering that th... more The occurrence of high-ozone concentrations during drought episodes is common considering that they are partially caused by the same meteorological phenomena. It was suggested that mild drought could protect plants against ozone-induced damage by causing the closure of stomata and preventing the entry of ozone into the leaves. The present experiment attempts to create an overview of the changes in cellular processes in response to ozone, mild drought and a combined treatment based on the use of 2D-DiGE to compare the involved proteins, and a number of supporting analyses. Morphological symptoms were worst in the combined treatment, indicating a severe stress, but fewer proteins were differentially abundant in the combined treatment than for ozone alone. Stomatal conductance was slightly lowered in the combined treatment. Shifts in carbon metabolism indicated that the metabolism changed to accommodate for protective measures and changes in the abundance of proteins involved in redox protection indicated the presence of an oxidative stress. This study allowed identifying a set of proteins that changed similarly during ozone and drought stress, indicative of crosstalk in the molecular response of plants exposed to these stresses. The abundance of other key proteins changed only when the plants are exposed to specific conditions. Together this indicates the coexistence of generalized and specialized responses to different conditions.

Research paper thumbnail of Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity

Plant physiology and biochemistry : PPB / Société française de physiologie végétale, 2014

This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mecha... more This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mechanisms of cadmium (Cd)-induced detoxification (i.e. chelation and antioxidative defence). A kinetic study was conducted on hydroponically grown Arabidopsis thaliana (L. Heyhn) to gain insight into the early events after exposure to Cd. Cadmium detoxification was investigated at different levels, including gene transcripts, enzyme activities and metabolite content. Data indicate a time-dependent response both within roots and between plant organs. Early on in roots, GSH was preferentially allocated to phytochelatin (PC) synthesis destined for Cd chelation. This led to decreased GSH levels, without alternative pathways activated to complement…

Research paper thumbnail of Problems inherent to a meta-analysis of proteomics data: A case study on the plants' response to Cd in different cultivation conditions

Journal of Proteomics, 2014

This meta-analysis focuses on plant-proteome responses to cadmium (Cd) stress. Initially, some ge... more This meta-analysis focuses on plant-proteome responses to cadmium (Cd) stress. Initially, some general topics related to a proteomics meta-analysis are discussed: (1) obstacles encountered during data analysis, (2) a consensus in proteomic research, (3) validation and good reporting practices for protein identification and (4) guidelines for statistical analysis of differentially abundant proteins. In a second part, the Cd responses in leaves and roots obtained from a proteomics meta-analysis are discussed in (1) a time comparison (short versus long term exposure), and (2) a culture comparison (hydroponics versus soil cultivation). Data of the meta-analysis confirmed the existence of an initial alarm phase upon Cd exposure. Whereas no metabolic equilibrium is established in hydroponically exposed plants, an equilibrium seems to be manifested in roots of plants grown in Cd-contaminated soil after long term exposure. In leaves, the carbohydrate metabolism is primarily affected independent of the exposure time and the cultivation method. In addition, a metabolic shift from CO 2fixation towards respiration is manifested, independent of the cultivation system. Finally, some ideas for the improvement of proteomics setups and for comparisons between studies are discussed. Significance This meta-analysis focuses on the plant responses to Cd stress in leaves and roots at the proteome level. This meta-analysis points out the encountered obstacles when performing a proteomics meta-analysis related to inherent technologies, but also related to experimental setups. Furthermore, the question is addressed whether an extrapolation of results obtained in hydroponic cultivation towards soil-grown plants is possible.

Research paper thumbnail of A Difference Gel Electrophoresis Study on Thylakoids Isolated from Poplar Leaves Reveals a Negative Impact of Ozone Exposure on Membrane Proteins

Journal of Proteome Research, 2011

Populus tremula L. x P. alba L. (Populus x canescens (Aiton) Smith), clone INRA 717-1-B4, sapling... more Populus tremula L. x P. alba L. (Populus x canescens (Aiton) Smith), clone INRA 717-1-B4, saplings were subjected to 120 ppb ozone exposure for 28 days. Chloroplasts were isolated, and the membrane proteins, solubilized using the detergent 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), were analyzed in a difference gel electrophoresis (DiGE) experiment comparing control versus ozone-exposed plants. Extrinsic photosystem (PS) proteins and adenosine triphosphatase (ATPase) subunits were detected to vary in abundance. The general trend was a decrease in abundance, except for ferredoxin-NADP(+) oxidoreductase (FNR), which increased after the first 7 days of exposure. The up-regulation of FNR would increase NAPDH production for reducing power and detoxification inside and outside of the chloroplast. Later on, FNR and a number of PS and ATPase subunits decrease in abundance. This could be the result of oxidative processes on chloroplast proteins but could also be a way to down-regulate photochemical reactions in response to an inhibition in Calvin cycle activity.

Research paper thumbnail of PART OF A SPECIAL ISSUE ON REACTIVE OXYGEN AND NITROGEN SPECIES Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium

Background and Aims Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. ... more Background and Aims Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. Plants respond to Cd toxicity via increasing their Cd-chelating and antioxidative capacities. They predominantly chelate Cd via glutathione (GSH) and phytochelatins (PCs), while antioxidative defence is mainly based on the use and recycling of both GSH and ascorbate (AsA), complemented by superoxide dismutase (SOD) and catalase (CAT). In addition, both metabolites act as a substrate for the regeneration of other essential antioxidants, which neutralize and regulate reactive oxygen species (ROS). Together, these functions influence the concentration and cellular redox state of GSH and AsA. In this study, these two parameters were examined in plants of Arabidopsis thaliana exposed to sublethal Cd concentrations. Methods Wild-type plants and mutant arabidopsis plants containing 30-45 % of wild-type levels of GSH (cad2-1) or 40-50 % of AsA (vtc1-1), together with the double-mutant (cad2-1 vtc1-1) were cultivated in a hydroponic system and exposed to sub-lethal Cd concentrations. Cadmium detoxification was investigated at different levels including gene expression and metabolite concentrations. Key Results In comparison with wild-type plants, elevated basal thiol levels and enhanced PC synthesis upon exposure to Cd efficiently compensated AsA deficiency in vtc1-1 plants and contributed to decreased sensitivity towards Cd. Glutathione-deficient (cad2-1 and cad2-1 vtc1-1) mutants, however, showed a more oxidized GSH redox state, resulting in initial oxidative stress and a higher sensitivity to Cd. In order to cope with the Cd stress to which they were exposed, GSH-deficient mutants activated multiple alternative pathways. Conclusions Our observations indicate that GSH and AsA deficiency differentially alter plant GSH homeostasis, resulting in opposite Cd sensitivities relative to wild-type plants. Upon Cd exposure, GSH-deficient mutants were hampered in chelation. They experienced phenotypic disturbances and even more oxidative stress, and therefore activated multiple alternative pathways such as SOD, CAT and ascorbate peroxidase, indicating a higher Cd sensitivity. Ascorbate deficiency, however, was associated with enhanced PC synthesis in comparison with wild-type plants after Cd exposure, which contributed to decreased sensitivity towards Cd.

Research paper thumbnail of The effects of ozone on the leaf processes of poplar: A proteomics approach

After the industrial revolution of the 1700s and 1800s, and the subsequent industrialization, man... more After the industrial revolution of the 1700s and 1800s, and the subsequent industrialization, many pollutants have accumulated in the atmosphere, mainly due to the use of coal and fossil fuels. Besides the primary pollutants such as nitrogen oxides and sulfur oxides, secondary oxides such as ozone started to accumulate. Nowadays, ozone is the third gas involved in global climate change, but is also a major health risk for humans, and induces considerable damage to vegetation. Starting in the 50s, ozone research was based on targeted studies. Nowadays, with the advent of global techniques such as transcriptomics and proteomics, new results can be produced in an unbiased way. In the thesis presented here, a proteomic study of the effects of ozone on poplar leaf processes was carried out. With the help of this technique, complemented with biochemical and physiological approaches and with morphological observations, it was possible to confirm previous results, but also to elaborate new ...

Research paper thumbnail of Acetaminophen Overdose as a Potential Risk Factor for Parkinson's Disease

Clinical and Translational Science

Research paper thumbnail of Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium

Annals of Botany, 2015

Background and Aims Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. ... more Background and Aims Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. Plants respond to Cd toxicity via increasing their Cd-chelating and antioxidative capacities. They predominantly chelate Cd via glutathione (GSH) and phytochelatins (PCs), while antioxidative defence is mainly based on the use and recycling of both GSH and ascorbate (AsA), complemented by superoxide dismutase (SOD) and catalase (CAT). In addition, both metabolites act as a substrate for the regeneration of other essential antioxidants, which neutralize and regulate reactive oxygen species (ROS). Together, these functions influence the concentration and cellular redox state of GSH and AsA. In this study, these two parameters were examined in plants of Arabidopsis thaliana exposed to sublethal Cd concentrations.

Research paper thumbnail of 2D DiGE coupled with dual thiol-staining and metallomics reveals proteins targeted by Cd induced oxidative stress Arabidopsis thaliana

Research paper thumbnail of Proteomic study of the vegetative development of poplar leaves in normal and ozone treatment conditions

Research paper thumbnail of Les effets de l'ozone sur les processus foliaires du peuplier: une approche protéomique

Research paper thumbnail of Transcriptomics analysis of human iPSC-derived dopaminergic neurons reveals a novel model for sporadic Parkinson’s disease

Molecular Psychiatry, Jun 20, 2022

Research paper thumbnail of Genes associated with Parkinson's disease respond to increasing polychlorinated biphenyl levels in the blood of healthy females

Toxicology Letters, Oct 1, 2018

Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly fou... more Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly found in human blood, that have been suggested to be linked to the occurrence of sporadic Parkinson's disease (PD). It has been reported that some non-coplanar PCBs accumulate in the brains of female PD patients. To improve our understanding of the association between PCB exposure and PD risk we have applied whole transcriptome gene expression analysis in blood cells from 594 PCB-exposed subjects (369 female, 225 male). Interestingly, we observe that in females, blood levels of non-coplanar PCBs appear to be associated with expression levels of PD-specific genes. However, no such association was detected in males. Among the 131 PD-specific genes affected, 39 have been shown to display similar changes in expression levels in the substantia nigra of deceased PD patients. Especially among the down-regulated genes, transcripts of genes involved in neurotransmitter vesicle-related functions were predominant.

Research paper thumbnail of Bulletin de l'Académie Lorraine des Sciences, N°50, 2011

Research paper thumbnail of The Effects of Ozone on Polar Leaf Processes: A Proteomics Approach

ABSTRACT After the industrial revolution of the 1700s and 1800s, and the subsequent industrializa... more ABSTRACT After the industrial revolution of the 1700s and 1800s, and the subsequent industrialization, many pollutants have accumulated in the atmosphere, mainly due to the use of coal and fossil fuels. Besides the primary pollutants such as nitrogen oxides and sulfur oxides, secondary oxides such as ozone started to accumulate. Nowadays, ozone is thethird gas involved in global climate change, but is also a major health risk for humans, and inducesconsiderable damage to vegetation. Starting in the 50s, ozone research was based on targeted studies. Nowadays, with the advent of global techniques such as transcriptomics and proteomics, new results can be produced in an unbiased way. In the thesis presented here, a proteomic study of the effects of ozone on poplar leaf processes was carried out. With the help of this technique, complemented with biochemical and physiological approaches and with morphological observations, it was possible to confirm previous results, but also to elaborate new hypotheses concerning the effects of ozone on poplar leaf metabolism. In parallel, studying the stress also allowed to clarify some of the changes that occur in metabolism during leaf development, under stress conditions and under control conditions. In this document, the procedures, results and conclusions obtained during this study are presented in detail.

Research paper thumbnail of Transcriptomics analysis of human iPSC-derived dopaminergic neurons reveals a novel model for sporadic Parkinson’s disease

Research paper thumbnail of Genes associated with Parkinson's disease respond to increasing polychlorinated biphenyl levels in the blood of healthy females

Environmental Pollution, 2019

Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly fou... more Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly found in human blood, that have been suggested to be linked to the occurrence of sporadic Parkinson's disease (PD). It has been reported that some non-coplanar PCBs accumulate in the brains of female PD patients. To improve our understanding of the association between PCB exposure and PD risk we have applied whole transcriptome gene expression analysis in blood cells from 594 PCB-exposed subjects (369 female, 225 male). Interestingly, we observe that in females, blood levels of non-coplanar PCBs appear to be associated with expression levels of PD-specific genes. However, no such association was detected in males. Among the 131 PD-specific genes affected, 39 have been shown to display similar changes in expression levels in the substantia nigra of deceased PD patients. Especially among the down-regulated genes, transcripts of genes involved in neurotransmitter vesicle-related functions were predominant.

Research paper thumbnail of Bulletin de l'Académie Lorraine des Sciences, N°50, 2011

Research paper thumbnail of Ozone-induced changes in the expression of glutamine synthetase isoforms in poplar leaves

Research paper thumbnail of The Effects of Ozone on Polar Leaf Processes: A Proteomics Approach

After the industrial revolution of the 1700s and 1800s, and the subsequent industrialization, man... more After the industrial revolution of the 1700s and 1800s, and the subsequent industrialization, many pollutants have accumulated in the atmosphere, mainly due to the use of coal and fossil fuels. Besides the primary pollutants such as nitrogen oxides and sulfur oxides, secondary oxides such as ozone started to accumulate. Nowadays, ozone is thethird gas involved in global climate change, but is also a major health risk for humans, and inducesconsiderable damage to vegetation. Starting in the 50s, ozone research was based on targeted studies. Nowadays, with the advent of global techniques such as transcriptomics and proteomics, new results can be produced in an unbiased way. In the thesis presented here, a proteomic study of the effects of ozone on poplar leaf processes was carried out. With the help of this technique, complemented with biochemical and physiological approaches and with morphological observations, it was possible to confirm previous results, but also to elaborate new hy...

Research paper thumbnail of A physiological and proteomic study of poplar leaves during ozone exposure combined with mild drought

Proteomics, 2013

The occurrence of high-ozone concentrations during drought episodes is common considering that th... more The occurrence of high-ozone concentrations during drought episodes is common considering that they are partially caused by the same meteorological phenomena. It was suggested that mild drought could protect plants against ozone-induced damage by causing the closure of stomata and preventing the entry of ozone into the leaves. The present experiment attempts to create an overview of the changes in cellular processes in response to ozone, mild drought and a combined treatment based on the use of 2D-DiGE to compare the involved proteins, and a number of supporting analyses. Morphological symptoms were worst in the combined treatment, indicating a severe stress, but fewer proteins were differentially abundant in the combined treatment than for ozone alone. Stomatal conductance was slightly lowered in the combined treatment. Shifts in carbon metabolism indicated that the metabolism changed to accommodate for protective measures and changes in the abundance of proteins involved in redox protection indicated the presence of an oxidative stress. This study allowed identifying a set of proteins that changed similarly during ozone and drought stress, indicative of crosstalk in the molecular response of plants exposed to these stresses. The abundance of other key proteins changed only when the plants are exposed to specific conditions. Together this indicates the coexistence of generalized and specialized responses to different conditions.

Research paper thumbnail of Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity

Plant physiology and biochemistry : PPB / Société française de physiologie végétale, 2014

This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mecha... more This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mechanisms of cadmium (Cd)-induced detoxification (i.e. chelation and antioxidative defence). A kinetic study was conducted on hydroponically grown Arabidopsis thaliana (L. Heyhn) to gain insight into the early events after exposure to Cd. Cadmium detoxification was investigated at different levels, including gene transcripts, enzyme activities and metabolite content. Data indicate a time-dependent response both within roots and between plant organs. Early on in roots, GSH was preferentially allocated to phytochelatin (PC) synthesis destined for Cd chelation. This led to decreased GSH levels, without alternative pathways activated to complement…

Research paper thumbnail of Problems inherent to a meta-analysis of proteomics data: A case study on the plants' response to Cd in different cultivation conditions

Journal of Proteomics, 2014

This meta-analysis focuses on plant-proteome responses to cadmium (Cd) stress. Initially, some ge... more This meta-analysis focuses on plant-proteome responses to cadmium (Cd) stress. Initially, some general topics related to a proteomics meta-analysis are discussed: (1) obstacles encountered during data analysis, (2) a consensus in proteomic research, (3) validation and good reporting practices for protein identification and (4) guidelines for statistical analysis of differentially abundant proteins. In a second part, the Cd responses in leaves and roots obtained from a proteomics meta-analysis are discussed in (1) a time comparison (short versus long term exposure), and (2) a culture comparison (hydroponics versus soil cultivation). Data of the meta-analysis confirmed the existence of an initial alarm phase upon Cd exposure. Whereas no metabolic equilibrium is established in hydroponically exposed plants, an equilibrium seems to be manifested in roots of plants grown in Cd-contaminated soil after long term exposure. In leaves, the carbohydrate metabolism is primarily affected independent of the exposure time and the cultivation method. In addition, a metabolic shift from CO 2fixation towards respiration is manifested, independent of the cultivation system. Finally, some ideas for the improvement of proteomics setups and for comparisons between studies are discussed. Significance This meta-analysis focuses on the plant responses to Cd stress in leaves and roots at the proteome level. This meta-analysis points out the encountered obstacles when performing a proteomics meta-analysis related to inherent technologies, but also related to experimental setups. Furthermore, the question is addressed whether an extrapolation of results obtained in hydroponic cultivation towards soil-grown plants is possible.

Research paper thumbnail of A Difference Gel Electrophoresis Study on Thylakoids Isolated from Poplar Leaves Reveals a Negative Impact of Ozone Exposure on Membrane Proteins

Journal of Proteome Research, 2011

Populus tremula L. x P. alba L. (Populus x canescens (Aiton) Smith), clone INRA 717-1-B4, sapling... more Populus tremula L. x P. alba L. (Populus x canescens (Aiton) Smith), clone INRA 717-1-B4, saplings were subjected to 120 ppb ozone exposure for 28 days. Chloroplasts were isolated, and the membrane proteins, solubilized using the detergent 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), were analyzed in a difference gel electrophoresis (DiGE) experiment comparing control versus ozone-exposed plants. Extrinsic photosystem (PS) proteins and adenosine triphosphatase (ATPase) subunits were detected to vary in abundance. The general trend was a decrease in abundance, except for ferredoxin-NADP(+) oxidoreductase (FNR), which increased after the first 7 days of exposure. The up-regulation of FNR would increase NAPDH production for reducing power and detoxification inside and outside of the chloroplast. Later on, FNR and a number of PS and ATPase subunits decrease in abundance. This could be the result of oxidative processes on chloroplast proteins but could also be a way to down-regulate photochemical reactions in response to an inhibition in Calvin cycle activity.

Research paper thumbnail of PART OF A SPECIAL ISSUE ON REACTIVE OXYGEN AND NITROGEN SPECIES Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium

Background and Aims Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. ... more Background and Aims Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. Plants respond to Cd toxicity via increasing their Cd-chelating and antioxidative capacities. They predominantly chelate Cd via glutathione (GSH) and phytochelatins (PCs), while antioxidative defence is mainly based on the use and recycling of both GSH and ascorbate (AsA), complemented by superoxide dismutase (SOD) and catalase (CAT). In addition, both metabolites act as a substrate for the regeneration of other essential antioxidants, which neutralize and regulate reactive oxygen species (ROS). Together, these functions influence the concentration and cellular redox state of GSH and AsA. In this study, these two parameters were examined in plants of Arabidopsis thaliana exposed to sublethal Cd concentrations. Methods Wild-type plants and mutant arabidopsis plants containing 30-45 % of wild-type levels of GSH (cad2-1) or 40-50 % of AsA (vtc1-1), together with the double-mutant (cad2-1 vtc1-1) were cultivated in a hydroponic system and exposed to sub-lethal Cd concentrations. Cadmium detoxification was investigated at different levels including gene expression and metabolite concentrations. Key Results In comparison with wild-type plants, elevated basal thiol levels and enhanced PC synthesis upon exposure to Cd efficiently compensated AsA deficiency in vtc1-1 plants and contributed to decreased sensitivity towards Cd. Glutathione-deficient (cad2-1 and cad2-1 vtc1-1) mutants, however, showed a more oxidized GSH redox state, resulting in initial oxidative stress and a higher sensitivity to Cd. In order to cope with the Cd stress to which they were exposed, GSH-deficient mutants activated multiple alternative pathways. Conclusions Our observations indicate that GSH and AsA deficiency differentially alter plant GSH homeostasis, resulting in opposite Cd sensitivities relative to wild-type plants. Upon Cd exposure, GSH-deficient mutants were hampered in chelation. They experienced phenotypic disturbances and even more oxidative stress, and therefore activated multiple alternative pathways such as SOD, CAT and ascorbate peroxidase, indicating a higher Cd sensitivity. Ascorbate deficiency, however, was associated with enhanced PC synthesis in comparison with wild-type plants after Cd exposure, which contributed to decreased sensitivity towards Cd.

Research paper thumbnail of The effects of ozone on the leaf processes of poplar: A proteomics approach

After the industrial revolution of the 1700s and 1800s, and the subsequent industrialization, man... more After the industrial revolution of the 1700s and 1800s, and the subsequent industrialization, many pollutants have accumulated in the atmosphere, mainly due to the use of coal and fossil fuels. Besides the primary pollutants such as nitrogen oxides and sulfur oxides, secondary oxides such as ozone started to accumulate. Nowadays, ozone is the third gas involved in global climate change, but is also a major health risk for humans, and induces considerable damage to vegetation. Starting in the 50s, ozone research was based on targeted studies. Nowadays, with the advent of global techniques such as transcriptomics and proteomics, new results can be produced in an unbiased way. In the thesis presented here, a proteomic study of the effects of ozone on poplar leaf processes was carried out. With the help of this technique, complemented with biochemical and physiological approaches and with morphological observations, it was possible to confirm previous results, but also to elaborate new ...

Research paper thumbnail of Acetaminophen Overdose as a Potential Risk Factor for Parkinson's Disease

Clinical and Translational Science

Research paper thumbnail of Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of arabidopsis to cadmium

Annals of Botany, 2015

Background and Aims Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. ... more Background and Aims Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. Plants respond to Cd toxicity via increasing their Cd-chelating and antioxidative capacities. They predominantly chelate Cd via glutathione (GSH) and phytochelatins (PCs), while antioxidative defence is mainly based on the use and recycling of both GSH and ascorbate (AsA), complemented by superoxide dismutase (SOD) and catalase (CAT). In addition, both metabolites act as a substrate for the regeneration of other essential antioxidants, which neutralize and regulate reactive oxygen species (ROS). Together, these functions influence the concentration and cellular redox state of GSH and AsA. In this study, these two parameters were examined in plants of Arabidopsis thaliana exposed to sublethal Cd concentrations.

Research paper thumbnail of 2D DiGE coupled with dual thiol-staining and metallomics reveals proteins targeted by Cd induced oxidative stress Arabidopsis thaliana

Research paper thumbnail of Proteomic study of the vegetative development of poplar leaves in normal and ozone treatment conditions

Research paper thumbnail of Les effets de l'ozone sur les processus foliaires du peuplier: une approche protéomique