Christopher Newton-cheh | Harvard Medical School (original) (raw)
Papers by Christopher Newton-cheh
Background: Heritable electrocardiographic (ECG) and heart rate variability (HRV) measures, refle... more Background: Heritable electrocardiographic (ECG) and heart rate variability (HRV) measures, reflecting pacemaking, conduction, repolarization and autonomic function in the heart have been associated with risks for cardiac arrhythmias. Whereas several rare monogenic conditions with extreme phenotypes have been noted, few common genetic factors contributing to interindividual variability in ECG and HRV measures have been identified. We report the results of a community-based genomewide association study of six ECG and HRV intermediate traits.
Background: Cardiovascular disease (CVD) and its most common manifestations -including coronary h... more Background: Cardiovascular disease (CVD) and its most common manifestations -including coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF) -are major causes of morbidity and mortality. In many industrialized countries, cardiovascular disease (CVD) claims more lives each year than any other disease. Heart disease and stroke are the first and third leading causes of death in the United States. Prior investigations have reported several single gene variants associated with CHD, stroke, HF, and AF. We report a community-based genome-wide association study of major CVD outcomes.
Background: Echocardiographic left ventricular (LV) measurements, exercise responses to standardi... more Background: Echocardiographic left ventricular (LV) measurements, exercise responses to standardized treadmill test (ETT) and brachial artery (BA) vascular function are heritable traits that are associated with cardiovascular disease risk. We conducted a genome-wide association study (GWAS) in the community-based Framingham Heart Study.
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005
Most common diseases and many important quantitative traits are complex genetic traits, with mult... more Most common diseases and many important quantitative traits are complex genetic traits, with multiple genetic and environmental variables contributing to the observed phenotype. Because of the multi-factorial nature of complex traits, each individual genetic variant generally has only a modest effect, and the interaction of genetic variants with each other or with environmental factors can potentially be quite important in determining the observed phenotype. It remains largely unknown what sort of genetic variants explain inherited variation in complex traits, but recent evidence suggests that common genetic variants will explain at least some of the inherited variation in susceptibility to common disease. Genetic association studies, in which the allele or genotype frequencies at markers are determined in affected individuals and compared with those of controls (either population- or family-based), may be an effective approach to detecting the effects of common variants with modest effects. With the explosion in single nucleotide polymorphism (SNP) discovery and genotyping technologies, large-scale association studies have become feasible, and small-scale association studies have become plentiful. We review the different types of association studies and discuss issues that are important to consider when performing and interpreting association studies of complex genetic traits. Heritable and accurately measured phenotypes, carefully matched large samples, well-chosen genetic markers, and adequate standards in genotyping, analysis, and interpretation are all integral parts of a high-quality association study.
Pharmacogenetics and genomics, 2009
To study whether NOS1AP single nucleotide polymorphisms (SNPs), rs10494366 T>G and rs10918594 ... more To study whether NOS1AP single nucleotide polymorphisms (SNPs), rs10494366 T>G and rs10918594 C>G, modify the heart-rate-corrected QT (QTc) prolonging effect of calcium channel blockers. Common variation in the NOS1AP gene has been associated with QT interval variation in several large population samples. NOS1 is presumed to influence intracellular calcium. The prospective population-based Rotterdam Study includes 16 603 ECGs from 7565 participants (>or=55 years), after exclusion of patients with left ventricular hypertrophy, left and right bundle branch block, as well as carriers of pacemakers. The endpoint was the length of the QTc interval in calcium channel blocker users and non-users with the minor alleles compared with the major alleles (wild type). We used a repeated-measurement analysis, adjusted for all known confounders. Use of verapamil was associated with a significant QTc interval prolongation [6.0 ms 95% confidence interval (CI) 1.7; 10.2] compared with non-us...
PLoS Genetics, 2012
Although genome-wide association studies (GWAS) have identified hundreds of complex trait loci, t... more Although genome-wide association studies (GWAS) have identified hundreds of complex trait loci, the pathomechanisms of most remain elusive. Studying the genetics of risk factors predisposing to disease is an attractive approach to identify targets for functional studies. Intracranial aneurysms (IA) are rupture-prone pouches at cerebral artery branching sites. IA is a complex disease for which GWAS have identified five loci with strong association and a further 14 loci with suggestive association. To decipher potential underlying disease mechanisms, we tested whether there are IA loci that convey their effect through elevating blood pressure (BP), a strong risk factor of IA. We performed a meta-analysis of four population-based Finnish cohorts (n FIN = 11 266) not selected for IA, to assess the association of previously identified IA candidate loci (n = 19) with BP. We defined systolic BP (SBP), diastolic BP, mean arterial pressure, and pulse pressure as quantitative outcome variables. The most significant result was further tested for association in the ICBP-GWAS cohort of 200 000 individuals. We found that the suggestive IA locus at 5q23.2 in PRDM6 was significantly associated with SBP in individuals of European descent (p FIN = 3.01E-05, p ICBP-GWAS = 0.0007, p ALL = 8.13E-07). The risk allele of IA was associated with higher SBP. PRDM6 encodes a protein predominantly expressed in vascular smooth muscle cells. Our study connects a complex disease (IA) locus with a common risk factor for the disease (SBP). We hypothesize that common variants in PRDM6 can contribute to altered vascular wall structure, hence increasing SBP and predisposing to IA. True positive associations often fail to reach genome-wide significance in GWAS. Our findings show that analysis of traditional risk factors as intermediate phenotypes is an effective tool for deciphering hidden heritability. Further, we demonstrate that common disease loci identified in a population isolate may bear wider significance.
Current Cardiovascular Risk Reports, 2007
Circulation. Arrhythmia and electrophysiology, 2009
Electrocardiographic QT interval prolongation is a risk factor for sudden cardiac death and drug-... more Electrocardiographic QT interval prolongation is a risk factor for sudden cardiac death and drug-induced arrhythmia. The clinical correlates and heritability of QT interval duration in blacks have not been well studied despite their higher risk for sudden cardiac death compared with non-Hispanic whites. We sought to investigate potential correlates of the QT interval and estimate its heritability in the Jackson Heart Study. The Jackson Heart Study comprises a sample of blacks residing in Jackson, Miss, of whom 5302 individuals with data at the baseline examination were available for study. Jackson Heart Study participants on QT-altering medications, with bundle-branch block, paced rhythm, atrial fibrillation/flutter, or other arrhythmias were excluded, resulting in a sample of 4660 individuals eligible for analyses. The relation between QT and potential covariates was tested using multivariable stepwise linear regression. Heritability was estimated using Sequential Oligogenic Linkag...
European Heart Journal - EUR HEART J, 2004
PLoS ONE, 2011
The integrated analysis of genotypic and expression data for association with complex traits coul... more The integrated analysis of genotypic and expression data for association with complex traits could identify novel genetic pathways involved in complex traits. We profiled 19,573 expression probes in Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) from 299 twins and correlated these with 44 quantitative traits (QTs). For 939 expressed probes correlating with more than one QT, we investigated the presence of eQTL associations in three datasets of 57 CEU HapMap founders and 86 unrelated twins. Genome-wide association analysis of these probes with 2.2 m SNPs revealed 131 potential eQTLs (1,989 eQTL SNPs) overlapping between the HapMap datasets, five of which were in cis (58 eQTL SNPs). We then tested 535 SNPs tagging the eQTL SNPs, for association with the relevant QT in 2,905 twins. We identified nine potential SNP-QT associations (P,0.01) but none significantly replicated in five large consortia of 1,097-16,129 subjects. We also failed to replicate previous reported eQTL associations with body mass index, plasma low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides levels derived from lymphocytes, adipose and liver tissue. Our results and additional power calculations suggest that proponents may have been overoptimistic in the power of LCLs in eQTL approaches to elucidate regulatory genetic effects on complex traits using the small datasets generated to date. Nevertheless, larger tissue-specific expression data sets relevant to specific traits are becoming available, and should enable the adoption of similar integrated analyses in the near future.
PLoS Genetics, 2011
The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction ti... more The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA) studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (n = 6,247) to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs) using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844) within the gene encoding the cardiac sodium channel (SCN5A) with genome-wide significant association (p,2.5610 28 ) in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta = 5.1 msec per minor allele, 95% CI = 4.1-6.1, p = 3610 223 ). This SNP was also associated with PR interval (beta = 2.4 msec per minor allele, 95% CI = 1.8-3.0, p = 3610 216 ) in individuals of European ancestry (n = 14,042), but with a smaller effect size (p for heterogeneity ,0.001) and variability explained (0.5%). Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015), MEIS1 (rs10865355), and TBX5 (rs7312625) that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, p = 0.009) in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and Asian samples and identify an association signal at one of these loci that is more strongly associated with PR interval in African Americans than in Europeans. Cleveland Family Study (CFS): Case Western Reserve University (NIH HL 46380, M01RR00080); Jackson Heart Study (JHS): Jackson State University (N01-HC-95170), University of Mississippi (N01-HC-95171), Tougaloo College (N01-HC-95172); Multi-Ethnic Study of Atherosclerosis (MESA): University of Washington (N01-HC-95159), Regents of the University of California (N01-HC-95160), Columbia University (N01-HC-95161), Johns Hopkins University (N01-HC-95162, N01-HC-95168), University of Minnesota (N01-HC-95163), Northwestern University (N01-HC-95164), Wake Forest University (N01-HC-95165), University of Vermont (N01-HC-95166), New England Medical Center (N01-HC-95167), Harbor-UCLA Research and Education Institute (N01-HC-95169), Cedars-Sinai Medical Center (R01-HL-071205), University of Virginia (subcontract to R01-HL-071205).
PLoS Genetics, 2011
Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify ... more Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify common genetic polymorphisms associated with CHD and its risk factors (LDL-and HDL-cholesterol (LDL-C and HDL-C), hypertension, smoking, and type-2 diabetes) in individuals of African ancestry, we performed a genome-wide association study (GWAS) in 8,090 African Americans from five population-based cohorts. We replicated 17 loci previously associated with CHD or its risk factors in Caucasians. For five of these regions (CHD: CDKN2A/CDKN2B; HDL-C: FADS1-3, PLTP, LPL, and ABCA1), we could leverage the distinct linkage disequilibrium (LD) patterns in African Americans to identify DNA polymorphisms more strongly associated with the phenotypes than the previously reported index SNPs found in Caucasian populations. We also developed a new approach for association testing in admixed populations that uses allelic and local ancestry variation. Using this method, we discovered several loci that would have been missed using the basic allelic and global ancestry information only. Our conclusions suggest that no major loci uniquely explain the high prevalence of CHD in African Americans. Our project has developed resources and methods that address both admixture-and SNP-association to maximize power for genetic discovery in even larger African-American consortia.
PLoS Genetics, 2009
It has been argued that the limited genetic diversity and reduced allelic heterogeneity observed ... more It has been argued that the limited genetic diversity and reduced allelic heterogeneity observed in isolated founder populations facilitates discovery of loci contributing to both Mendelian and complex disease. A strong founder effect, severe isolation, and substantial inbreeding have dramatically reduced genetic diversity in natives from the island of Kosrae, Federated States of Micronesia, who exhibit a high prevalence of obesity and other metabolic disorders. We hypothesized that genetic drift and possibly natural selection on Kosrae might have increased the frequency of previously rare genetic variants with relatively large effects, making these alleles readily detectable in genome-wide association analysis. However, mapping in large, inbred cohorts introduces analytic challenges, as extensive relatedness between subjects violates the assumptions of independence upon which traditional association test statistics are based. We performed genome-wide association analysis for 15 quantitative traits in 2,906 members of the Kosrae population, using novel approaches to manage the extreme relatedness in the sample. As positive controls, we observe association to known loci for plasma cholesterol, triglycerides, and C-reactive protein and to a compelling candidate loci for thyroid stimulating hormone and fasting plasma glucose. We show that our study is well powered to detect common alleles explaining $5% phenotypic variance. However, no such large effects were observed with genome-wide significance, arguing that even in such a severely inbred population, common alleles typically have modest effects. Finally, we show that a majority of common variants discovered in Caucasians have indistinguishable effect sizes on Kosrae, despite the major differences in population genetics and environment.
PLoS Genetics, 2012
Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary ar... more Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the ''Metabochip,'' a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits. (GRA) . These authors contributed equally to this work.
Nature Genetics, 2008
Mutations in SLC12A3, SLC12A1 and KCNJ1 in FHS We screened all coding exons and flanking intronic... more Mutations in SLC12A3, SLC12A1 and KCNJ1 in FHS We screened all coding exons and flanking intronic sequences of SLC12A3, SLC12A1 and KCNJ1 for DNA sequence variants in the 1,985 unrelated subjects and 1,140 relatives with available DNA
Background: Heritable electrocardiographic (ECG) and heart rate variability (HRV) measures, refle... more Background: Heritable electrocardiographic (ECG) and heart rate variability (HRV) measures, reflecting pacemaking, conduction, repolarization and autonomic function in the heart have been associated with risks for cardiac arrhythmias. Whereas several rare monogenic conditions with extreme phenotypes have been noted, few common genetic factors contributing to interindividual variability in ECG and HRV measures have been identified. We report the results of a community-based genomewide association study of six ECG and HRV intermediate traits.
Background: Cardiovascular disease (CVD) and its most common manifestations -including coronary h... more Background: Cardiovascular disease (CVD) and its most common manifestations -including coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF) -are major causes of morbidity and mortality. In many industrialized countries, cardiovascular disease (CVD) claims more lives each year than any other disease. Heart disease and stroke are the first and third leading causes of death in the United States. Prior investigations have reported several single gene variants associated with CHD, stroke, HF, and AF. We report a community-based genome-wide association study of major CVD outcomes.
Background: Echocardiographic left ventricular (LV) measurements, exercise responses to standardi... more Background: Echocardiographic left ventricular (LV) measurements, exercise responses to standardized treadmill test (ETT) and brachial artery (BA) vascular function are heritable traits that are associated with cardiovascular disease risk. We conducted a genome-wide association study (GWAS) in the community-based Framingham Heart Study.
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005
Most common diseases and many important quantitative traits are complex genetic traits, with mult... more Most common diseases and many important quantitative traits are complex genetic traits, with multiple genetic and environmental variables contributing to the observed phenotype. Because of the multi-factorial nature of complex traits, each individual genetic variant generally has only a modest effect, and the interaction of genetic variants with each other or with environmental factors can potentially be quite important in determining the observed phenotype. It remains largely unknown what sort of genetic variants explain inherited variation in complex traits, but recent evidence suggests that common genetic variants will explain at least some of the inherited variation in susceptibility to common disease. Genetic association studies, in which the allele or genotype frequencies at markers are determined in affected individuals and compared with those of controls (either population- or family-based), may be an effective approach to detecting the effects of common variants with modest effects. With the explosion in single nucleotide polymorphism (SNP) discovery and genotyping technologies, large-scale association studies have become feasible, and small-scale association studies have become plentiful. We review the different types of association studies and discuss issues that are important to consider when performing and interpreting association studies of complex genetic traits. Heritable and accurately measured phenotypes, carefully matched large samples, well-chosen genetic markers, and adequate standards in genotyping, analysis, and interpretation are all integral parts of a high-quality association study.
Pharmacogenetics and genomics, 2009
To study whether NOS1AP single nucleotide polymorphisms (SNPs), rs10494366 T>G and rs10918594 ... more To study whether NOS1AP single nucleotide polymorphisms (SNPs), rs10494366 T>G and rs10918594 C>G, modify the heart-rate-corrected QT (QTc) prolonging effect of calcium channel blockers. Common variation in the NOS1AP gene has been associated with QT interval variation in several large population samples. NOS1 is presumed to influence intracellular calcium. The prospective population-based Rotterdam Study includes 16 603 ECGs from 7565 participants (>or=55 years), after exclusion of patients with left ventricular hypertrophy, left and right bundle branch block, as well as carriers of pacemakers. The endpoint was the length of the QTc interval in calcium channel blocker users and non-users with the minor alleles compared with the major alleles (wild type). We used a repeated-measurement analysis, adjusted for all known confounders. Use of verapamil was associated with a significant QTc interval prolongation [6.0 ms 95% confidence interval (CI) 1.7; 10.2] compared with non-us...
PLoS Genetics, 2012
Although genome-wide association studies (GWAS) have identified hundreds of complex trait loci, t... more Although genome-wide association studies (GWAS) have identified hundreds of complex trait loci, the pathomechanisms of most remain elusive. Studying the genetics of risk factors predisposing to disease is an attractive approach to identify targets for functional studies. Intracranial aneurysms (IA) are rupture-prone pouches at cerebral artery branching sites. IA is a complex disease for which GWAS have identified five loci with strong association and a further 14 loci with suggestive association. To decipher potential underlying disease mechanisms, we tested whether there are IA loci that convey their effect through elevating blood pressure (BP), a strong risk factor of IA. We performed a meta-analysis of four population-based Finnish cohorts (n FIN = 11 266) not selected for IA, to assess the association of previously identified IA candidate loci (n = 19) with BP. We defined systolic BP (SBP), diastolic BP, mean arterial pressure, and pulse pressure as quantitative outcome variables. The most significant result was further tested for association in the ICBP-GWAS cohort of 200 000 individuals. We found that the suggestive IA locus at 5q23.2 in PRDM6 was significantly associated with SBP in individuals of European descent (p FIN = 3.01E-05, p ICBP-GWAS = 0.0007, p ALL = 8.13E-07). The risk allele of IA was associated with higher SBP. PRDM6 encodes a protein predominantly expressed in vascular smooth muscle cells. Our study connects a complex disease (IA) locus with a common risk factor for the disease (SBP). We hypothesize that common variants in PRDM6 can contribute to altered vascular wall structure, hence increasing SBP and predisposing to IA. True positive associations often fail to reach genome-wide significance in GWAS. Our findings show that analysis of traditional risk factors as intermediate phenotypes is an effective tool for deciphering hidden heritability. Further, we demonstrate that common disease loci identified in a population isolate may bear wider significance.
Current Cardiovascular Risk Reports, 2007
Circulation. Arrhythmia and electrophysiology, 2009
Electrocardiographic QT interval prolongation is a risk factor for sudden cardiac death and drug-... more Electrocardiographic QT interval prolongation is a risk factor for sudden cardiac death and drug-induced arrhythmia. The clinical correlates and heritability of QT interval duration in blacks have not been well studied despite their higher risk for sudden cardiac death compared with non-Hispanic whites. We sought to investigate potential correlates of the QT interval and estimate its heritability in the Jackson Heart Study. The Jackson Heart Study comprises a sample of blacks residing in Jackson, Miss, of whom 5302 individuals with data at the baseline examination were available for study. Jackson Heart Study participants on QT-altering medications, with bundle-branch block, paced rhythm, atrial fibrillation/flutter, or other arrhythmias were excluded, resulting in a sample of 4660 individuals eligible for analyses. The relation between QT and potential covariates was tested using multivariable stepwise linear regression. Heritability was estimated using Sequential Oligogenic Linkag...
European Heart Journal - EUR HEART J, 2004
PLoS ONE, 2011
The integrated analysis of genotypic and expression data for association with complex traits coul... more The integrated analysis of genotypic and expression data for association with complex traits could identify novel genetic pathways involved in complex traits. We profiled 19,573 expression probes in Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) from 299 twins and correlated these with 44 quantitative traits (QTs). For 939 expressed probes correlating with more than one QT, we investigated the presence of eQTL associations in three datasets of 57 CEU HapMap founders and 86 unrelated twins. Genome-wide association analysis of these probes with 2.2 m SNPs revealed 131 potential eQTLs (1,989 eQTL SNPs) overlapping between the HapMap datasets, five of which were in cis (58 eQTL SNPs). We then tested 535 SNPs tagging the eQTL SNPs, for association with the relevant QT in 2,905 twins. We identified nine potential SNP-QT associations (P,0.01) but none significantly replicated in five large consortia of 1,097-16,129 subjects. We also failed to replicate previous reported eQTL associations with body mass index, plasma low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides levels derived from lymphocytes, adipose and liver tissue. Our results and additional power calculations suggest that proponents may have been overoptimistic in the power of LCLs in eQTL approaches to elucidate regulatory genetic effects on complex traits using the small datasets generated to date. Nevertheless, larger tissue-specific expression data sets relevant to specific traits are becoming available, and should enable the adoption of similar integrated analyses in the near future.
PLoS Genetics, 2011
The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction ti... more The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA) studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (n = 6,247) to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs) using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844) within the gene encoding the cardiac sodium channel (SCN5A) with genome-wide significant association (p,2.5610 28 ) in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta = 5.1 msec per minor allele, 95% CI = 4.1-6.1, p = 3610 223 ). This SNP was also associated with PR interval (beta = 2.4 msec per minor allele, 95% CI = 1.8-3.0, p = 3610 216 ) in individuals of European ancestry (n = 14,042), but with a smaller effect size (p for heterogeneity ,0.001) and variability explained (0.5%). Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015), MEIS1 (rs10865355), and TBX5 (rs7312625) that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, p = 0.009) in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and Asian samples and identify an association signal at one of these loci that is more strongly associated with PR interval in African Americans than in Europeans. Cleveland Family Study (CFS): Case Western Reserve University (NIH HL 46380, M01RR00080); Jackson Heart Study (JHS): Jackson State University (N01-HC-95170), University of Mississippi (N01-HC-95171), Tougaloo College (N01-HC-95172); Multi-Ethnic Study of Atherosclerosis (MESA): University of Washington (N01-HC-95159), Regents of the University of California (N01-HC-95160), Columbia University (N01-HC-95161), Johns Hopkins University (N01-HC-95162, N01-HC-95168), University of Minnesota (N01-HC-95163), Northwestern University (N01-HC-95164), Wake Forest University (N01-HC-95165), University of Vermont (N01-HC-95166), New England Medical Center (N01-HC-95167), Harbor-UCLA Research and Education Institute (N01-HC-95169), Cedars-Sinai Medical Center (R01-HL-071205), University of Virginia (subcontract to R01-HL-071205).
PLoS Genetics, 2011
Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify ... more Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify common genetic polymorphisms associated with CHD and its risk factors (LDL-and HDL-cholesterol (LDL-C and HDL-C), hypertension, smoking, and type-2 diabetes) in individuals of African ancestry, we performed a genome-wide association study (GWAS) in 8,090 African Americans from five population-based cohorts. We replicated 17 loci previously associated with CHD or its risk factors in Caucasians. For five of these regions (CHD: CDKN2A/CDKN2B; HDL-C: FADS1-3, PLTP, LPL, and ABCA1), we could leverage the distinct linkage disequilibrium (LD) patterns in African Americans to identify DNA polymorphisms more strongly associated with the phenotypes than the previously reported index SNPs found in Caucasian populations. We also developed a new approach for association testing in admixed populations that uses allelic and local ancestry variation. Using this method, we discovered several loci that would have been missed using the basic allelic and global ancestry information only. Our conclusions suggest that no major loci uniquely explain the high prevalence of CHD in African Americans. Our project has developed resources and methods that address both admixture-and SNP-association to maximize power for genetic discovery in even larger African-American consortia.
PLoS Genetics, 2009
It has been argued that the limited genetic diversity and reduced allelic heterogeneity observed ... more It has been argued that the limited genetic diversity and reduced allelic heterogeneity observed in isolated founder populations facilitates discovery of loci contributing to both Mendelian and complex disease. A strong founder effect, severe isolation, and substantial inbreeding have dramatically reduced genetic diversity in natives from the island of Kosrae, Federated States of Micronesia, who exhibit a high prevalence of obesity and other metabolic disorders. We hypothesized that genetic drift and possibly natural selection on Kosrae might have increased the frequency of previously rare genetic variants with relatively large effects, making these alleles readily detectable in genome-wide association analysis. However, mapping in large, inbred cohorts introduces analytic challenges, as extensive relatedness between subjects violates the assumptions of independence upon which traditional association test statistics are based. We performed genome-wide association analysis for 15 quantitative traits in 2,906 members of the Kosrae population, using novel approaches to manage the extreme relatedness in the sample. As positive controls, we observe association to known loci for plasma cholesterol, triglycerides, and C-reactive protein and to a compelling candidate loci for thyroid stimulating hormone and fasting plasma glucose. We show that our study is well powered to detect common alleles explaining $5% phenotypic variance. However, no such large effects were observed with genome-wide significance, arguing that even in such a severely inbred population, common alleles typically have modest effects. Finally, we show that a majority of common variants discovered in Caucasians have indistinguishable effect sizes on Kosrae, despite the major differences in population genetics and environment.
PLoS Genetics, 2012
Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary ar... more Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the ''Metabochip,'' a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits. (GRA) . These authors contributed equally to this work.
Nature Genetics, 2008
Mutations in SLC12A3, SLC12A1 and KCNJ1 in FHS We screened all coding exons and flanking intronic... more Mutations in SLC12A3, SLC12A1 and KCNJ1 in FHS We screened all coding exons and flanking intronic sequences of SLC12A3, SLC12A1 and KCNJ1 for DNA sequence variants in the 1,985 unrelated subjects and 1,140 relatives with available DNA