tokenization_qwen.py · Alibaba-NLP/gte-Qwen2-1.5B-instruct at main (original) (raw)
| | | | | | ------------------------------------------------------------------------------------------------------------------------------------------- | --------------- | | | | from typing import List, Optional | | | | | from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer as OriginalQwen2Tokenizer | | | | | from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast as OriginalQwen2TokenizerFast | | | | | from tokenizers import processors | | | | | | | | | | VOCAB_FILES_NAMES = { | | | | | "vocab_file": "vocab.json", | | | | | "merges_file": "merges.txt", | | | | | "tokenizer_file": "tokenizer.json", | | | | | } | | | | | | | | | | class Qwen2Tokenizer(OriginalQwen2Tokenizer): | | | | | """ | | | | | Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding. | | | | | | | | | Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will | | | | | be encoded differently whether it is at the beginning of the sentence (without space) or not: | | | | | | | | | ```python | | | | | >>> from transformers import Qwen2Tokenizer | | | | | | | | | >>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer") | | | | | >>> tokenizer("Hello world")["input_ids"] | | | | | [9707, 1879] | | | | | | | | | >>> tokenizer(" Hello world")["input_ids"] | | | | | [21927, 1879] | | | | | ``` | | | | | This is expected. | | | | | | | | | You should not use GPT2Tokenizer instead, because of the different pretokenization rules. | | | | | | | | | This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | | | | | this superclass for more information regarding those methods. | | | | | | | | | Args: | | | | | vocab_file (`str`): | | | | | Path to the vocabulary file. | | | | | merges_file (`str`): | | | | | Path to the merges file. | | | | | errors (`str`, *optional*, defaults to `"replace"`): | | | | | Paradigm to follow when decoding bytes to UTF-8. See | | | | | [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. | | | | | unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | | | | | The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | | | | | token instead. | | | | | bos_token (`str`, *optional*): | | | | | The beginning of sequence token. Not applicable for this tokenizer. | | | | | eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | | | | | The end of sequence token. | | | | | pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | | | | | The token used for padding, for example when batching sequences of different lengths. | | | | | clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): | | | | | Whether or not the model should cleanup the spaces that were added when splitting the input text during the | | | | | tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces. | | | | | split_special_tokens (`bool`, *optional*, defaults to `False`): | | | | | Whether or not the special tokens should be split during the tokenization process. The default behavior is | | | | | to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") = | | | | | ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<', | | | | | '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment. | | | | | add_eos_token (`bool`, *optional*, defaults to `False`): | | | | | Whether or not to add an `eos_token` at the end of sequences. | | | | | """ | | | | | | | | | | def __init__( | | | | | self, | | | | | vocab_file, | | | | | merges_file, | | | | | errors="replace", | | | | | unk_token="<|endoftext|>", | | | | | bos_token=None, | | | | | eos_token="<|endoftext|>", | | | | | pad_token="<|endoftext|>", | | | | | clean_up_tokenization_spaces=False, | | | | | split_special_tokens=False, | | | | | add_eos_token=False, | | | | | **kwargs, | | | | | ): | | | | | # The add_eos_token code was inspired by the LlamaTokenizer | | | | | self.add_eos_token = add_eos_token | | | | | | | | | | super().__init__( | | | | | vocab_file=vocab_file, | | | | | merges_file=merges_file, | | | | | errors=errors, | | | | | unk_token=unk_token, | | | | | bos_token=bos_token, | | | | | eos_token=eos_token, | | | | | pad_token=pad_token, | | | | | clean_up_tokenization_spaces=clean_up_tokenization_spaces, | | | | | split_special_tokens=split_special_tokens, | | | | | add_eos_token=add_eos_token, | | | | | **kwargs, | | | | | ) | | | | | | | | | | def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | | | | | eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | | | | | | | | | | output = token_ids_0 + eos_token_id | | | | | | | | | | if token_ids_1 is not None: | | | | | output = output + token_ids_1 + eos_token_id | | | | | | | | | | return output | | | | | | | | | | def get_special_tokens_mask( | | | | | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | | | | | ) -> List[int]: | | | | | """ | | | | | Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | | | | | special tokens using the tokenizer `prepare_for_model` method. | | | | | | | | | Args: | | | | | token_ids_0 (`List[int]`): | | | | | List of IDs. | | | | | token_ids_1 (`List[int]`, *optional*): | | | | | Optional second list of IDs for sequence pairs. | | | | | already_has_special_tokens (`bool`, *optional*, defaults to `False`): | | | | | Whether or not the token list is already formatted with special tokens for the model. | | | | | | | | | Returns: | | | | | `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | | | | | """ | | | | | if already_has_special_tokens: | | | | | return super().get_special_tokens_mask( | | | | | token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | | | | | ) | | | | | | | | | | eos_token_id = [1] if self.add_eos_token else [] | | | | | | | | | | if token_ids_1 is None: | | | | | return ([0] * len(token_ids_0)) + eos_token_id | | | | | return ( | | | | | ([0] * len(token_ids_0)) | | | | | + eos_token_id | | | | | + ([0] * len(token_ids_1)) | | | | | + eos_token_id | | | | | ) | | | | | | | | | | def create_token_type_ids_from_sequences( | | | | | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | | | | | ) -> List[int]: | | | | | """ | | | | | Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT | | | | | sequence pair mask has the following format: | | | | | | | | | ``` | | | | | 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | | | | | | first sequence | second sequence | | | | ``` | | | | | | | | | if token_ids_1 is None, only returns the first portion of the mask (0s). | | | | | | | | | Args: | | | | | token_ids_0 (`List[int]`): | | | | | List of ids. | | | | | token_ids_1 (`List[int]`, *optional*): | | | | | Optional second list of IDs for sequence pairs. | | | | | | | | | Returns: | | | | | `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). | | | | | """ | | | | | eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | | | | | | | | | | output = [0] * len(token_ids_0 + eos_token_id) | | | | | | | | | | if token_ids_1 is not None: | | | | | output += [1] * len(token_ids_1 + eos_token_id) | | | | | | | | | | return output | | | | | | | | | | class Qwen2TokenizerFast(OriginalQwen2TokenizerFast): | | | | | """ | | | | | Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level | | | | | Byte-Pair-Encoding. | | | | | | | | | Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will | | | | | be encoded differently whether it is at the beginning of the sentence (without space) or not: | | | | | | | | | ```python | | | | | >>> from transformers import Qwen2TokenizerFast | | | | | | | | | >>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer") | | | | | >>> tokenizer("Hello world")["input_ids"] | | | | | [9707, 1879] | | | | | | | | | >>> tokenizer(" Hello world")["input_ids"] | | | | | [21927, 1879] | | | | | ``` | | | | | This is expected. | | | | | | | | | This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should | | | | | refer to this superclass for more information regarding those methods. | | | | | | | | | Args: | | | | | vocab_file (`str`, *optional*): | | | | | Path to the vocabulary file. | | | | | merges_file (`str`, *optional*): | | | | | Path to the merges file. | | | | | tokenizer_file (`str`, *optional*): | | | | | Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that | | | | | contains everything needed to load the tokenizer. | | | | | unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | | | | | The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | | | | | token instead. Not applicable to this tokenizer. | | | | | bos_token (`str`, *optional*): | | | | | The beginning of sequence token. Not applicable for this tokenizer. | | | | | eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | | | | | The end of sequence token. | | | | | pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | | | | | The token used for padding, for example when batching sequences of different lengths. | | | | | add_eos_token (`bool`, *optional*, defaults to `False`): | | | | | Whether or not to add an `eos_token` at the end of sequences. | | | | | """ | | | | | | | | | | slow_tokenizer_class = Qwen2Tokenizer | | | | | padding_side = "left" | | | | | | | | | | def __init__( | | | | | self, | | | | | vocab_file=None, | | | | | merges_file=None, | | | | | tokenizer_file=None, | | | | | unk_token="<|endoftext|>", | | | | | bos_token=None, | | | | | eos_token="<|endoftext|>", | | | | | pad_token="<|endoftext|>", | | | | | add_eos_token=False, | | | | | **kwargs, | | | | | ): | | | | | super().__init__( | | | | | vocab_file=vocab_file, | | | | | merges_file=merges_file, | | | | | tokenizer_file=tokenizer_file, | | | | | unk_token=unk_token, | | | | | bos_token=bos_token, | | | | | eos_token=eos_token, | | | | | pad_token=pad_token, | | | | | **kwargs, | | | | | ) | | | | | | | | | | self._add_eos_token = add_eos_token | | | | | self.update_post_processor() | | | | | | | | | | def update_post_processor(self): | | | | | """ | | | | | Updates the underlying post processor with the current `eos_token`. | | | | | """ | | | | | eos = self.eos_token | | | | | eos_token_id = self.eos_token_id | | | | | if eos is None and self.add_eos_token: | | | | | raise ValueError("add_eos_token = True but eos_token = None") | | | | | | | | | | single = f"$A:0{(' '+eos+':0') if self.add_eos_token else ''}" | | | | | pair = f"{single} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" | | | | | | | | | | special_tokens = [] | | | | | if self.add_eos_token: | | | | | special_tokens.append((eos, eos_token_id)) | | | | | self._tokenizer.post_processor = processors.TemplateProcessing( | | | | | single=single, pair=pair, special_tokens=special_tokens | | | | | ) | | | | | | | | | | @property | | | | | def add_eos_token(self): | | | | | return self._add_eos_token | | |