Wan2.1 (original) (raw)

LoRA

Wan-2.1 by the Wan Team.

This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model’s performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at this https URL.

You can find all the original Wan2.1 checkpoints under the Wan-AI organization.

The following Wan models are supported in Diffusers:

Click on the Wan2.1 models in the right sidebar for more examples of video generation.

Text-to-Video Generation

The example below demonstrates how to generate a video from text optimized for memory or inference speed.

T2V memory

T2V inference speed

Refer to the Reduce memory usage guide for more details about the various memory saving techniques.

The Wan2.1 text-to-video model below requires ~13GB of VRAM.

import torch import numpy as np from diffusers import AutoModel, WanPipeline from diffusers.quantizers import PipelineQuantizationConfig from diffusers.hooks.group_offloading import apply_group_offloading from diffusers.utils import export_to_video, load_image from transformers import UMT5EncoderModel

text_encoder = UMT5EncoderModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="text_encoder", torch_dtype=torch.bfloat16) vae = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="vae", torch_dtype=torch.float32) transformer = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)

onload_device = torch.device("cuda") offload_device = torch.device("cpu") apply_group_offloading(text_encoder, onload_device=onload_device, offload_device=offload_device, offload_type="block_level", num_blocks_per_group=4 ) transformer.enable_group_offload( onload_device=onload_device, offload_device=offload_device, offload_type="leaf_level", use_stream=True )

pipeline = WanPipeline.from_pretrained( "Wan-AI/Wan2.1-T2V-14B-Diffusers", vae=vae, transformer=transformer, text_encoder=text_encoder, torch_dtype=torch.bfloat16 ) pipeline.to("cuda")

prompt = """ The camera rushes from far to near in a low-angle shot, revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground. Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic shadows and warm highlights. Medium composition, front view, low angle, with depth of field. """ negative_prompt = """ Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards """

output = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_frames=81, guidance_scale=5.0, ).frames[0] export_to_video(output, "output.mp4", fps=16)

First-Last-Frame-to-Video Generation

The example below demonstrates how to use the image-to-video pipeline to generate a video using a text description, a starting frame, and an ending frame.

import numpy as np import torch import torchvision.transforms.functional as TF from diffusers import AutoencoderKLWan, WanImageToVideoPipeline from diffusers.utils import export_to_video, load_image from transformers import CLIPVisionModel

model_id = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers" image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32) vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanImageToVideoPipeline.from_pretrained( model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16 ) pipe.to("cuda")

first_frame = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_first_frame.png") last_frame = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_last_frame.png")

def aspect_ratio_resize(image, pipe, max_area=720 * 1280): aspect_ratio = image.height / image.width mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1] height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value image = image.resize((width, height)) return image, height, width

def center_crop_resize(image, height, width):

resize_ratio = max(width / image.width, height / image.height)


width = round(image.width * resize_ratio)
height = round(image.height * resize_ratio)
size = [width, height]
image = TF.center_crop(image, size)

return image, height, width

first_frame, height, width = aspect_ratio_resize(first_frame, pipe) if last_frame.size != first_frame.size: last_frame, _, _ = center_crop_resize(last_frame, height, width)

prompt = "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective."

output = pipe( image=first_frame, last_image=last_frame, prompt=prompt, height=height, width=width, guidance_scale=5.5 ).frames[0] export_to_video(output, "output.mp4", fps=16)

Any-to-Video Controllable Generation

Wan VACE supports various generation techniques which achieve controllable video generation. Some of the capabilities include:

The code snippets available in this pull request demonstrate some examples of how videos can be generated with controllability signals.

The general rule of thumb to keep in mind when preparing inputs for the VACE pipeline is that the input images, or frames of a video that you want to use for conditioning, should have a corresponding mask that is black in color. The black mask signifies that the model will not generate new content for that area, and only use those parts for conditioning the generation process. For parts/frames that should be generated by the model, the mask should be white in color.

Notes

WanPipeline

class diffusers.WanPipeline

< source >

( tokenizer: AutoTokenizer text_encoder: UMT5EncoderModel transformer: WanTransformer3DModel vae: AutoencoderKLWan scheduler: FlowMatchEulerDiscreteScheduler )

Parameters

Pipeline for text-to-video generation using Wan.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

__call__

< source >

( prompt: typing.Union[str, typing.List[str]] = None negative_prompt: typing.Union[str, typing.List[str]] = None height: int = 480 width: int = 832 num_frames: int = 81 num_inference_steps: int = 50 guidance_scale: float = 5.0 num_videos_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.Tensor] = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None output_type: typing.Optional[str] = 'np' return_dict: bool = True attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Union[typing.Callable[[int, int, typing.Dict], NoneType], diffusers.callbacks.PipelineCallback, diffusers.callbacks.MultiPipelineCallbacks, NoneType] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~WanPipelineOutput or tuple

Parameters

Returns

~WanPipelineOutput or tuple

If return_dict is True, WanPipelineOutput is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content.

The call function to the pipeline for generation.

Examples:

import torch from diffusers.utils import export_to_video from diffusers import AutoencoderKLWan, WanPipeline from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler

model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers" vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) flow_shift = 5.0
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift) pipe.to("cuda")

prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window." negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"

output = pipe( ... prompt=prompt, ... negative_prompt=negative_prompt, ... height=720, ... width=1280, ... num_frames=81, ... guidance_scale=5.0, ... ).frames[0] export_to_video(output, "output.mp4", fps=16)

encode_prompt

< source >

( prompt: typing.Union[str, typing.List[str]] negative_prompt: typing.Union[str, typing.List[str], NoneType] = None do_classifier_free_guidance: bool = True num_videos_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None max_sequence_length: int = 226 device: typing.Optional[torch.device] = None dtype: typing.Optional[torch.dtype] = None )

Parameters

Encodes the prompt into text encoder hidden states.

WanImageToVideoPipeline

class diffusers.WanImageToVideoPipeline

< source >

( tokenizer: AutoTokenizer text_encoder: UMT5EncoderModel image_encoder: CLIPVisionModel image_processor: CLIPImageProcessor transformer: WanTransformer3DModel vae: AutoencoderKLWan scheduler: FlowMatchEulerDiscreteScheduler )

Parameters

Pipeline for image-to-video generation using Wan.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

__call__

< source >

( image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] prompt: typing.Union[str, typing.List[str]] = None negative_prompt: typing.Union[str, typing.List[str]] = None height: int = 480 width: int = 832 num_frames: int = 81 num_inference_steps: int = 50 guidance_scale: float = 5.0 num_videos_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.Tensor] = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None image_embeds: typing.Optional[torch.Tensor] = None last_image: typing.Optional[torch.Tensor] = None output_type: typing.Optional[str] = 'np' return_dict: bool = True attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Union[typing.Callable[[int, int, typing.Dict], NoneType], diffusers.callbacks.PipelineCallback, diffusers.callbacks.MultiPipelineCallbacks, NoneType] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~WanPipelineOutput or tuple

Parameters

Returns

~WanPipelineOutput or tuple

If return_dict is True, WanPipelineOutput is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content.

The call function to the pipeline for generation.

Examples:

import torch import numpy as np from diffusers import AutoencoderKLWan, WanImageToVideoPipeline from diffusers.utils import export_to_video, load_image from transformers import CLIPVisionModel

model_id = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" image_encoder = CLIPVisionModel.from_pretrained( ... model_id, subfolder="image_encoder", torch_dtype=torch.float32 ... ) vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanImageToVideoPipeline.from_pretrained( ... model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16 ... ) pipe.to("cuda")

image = load_image( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg" ... ) max_area = 480 * 832 aspect_ratio = image.height / image.width mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1] height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value image = image.resize((width, height)) prompt = ( ... "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in " ... "the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot." ... ) negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"

output = pipe( ... image=image, ... prompt=prompt, ... negative_prompt=negative_prompt, ... height=height, ... width=width, ... num_frames=81, ... guidance_scale=5.0, ... ).frames[0] export_to_video(output, "output.mp4", fps=16)

encode_prompt

< source >

( prompt: typing.Union[str, typing.List[str]] negative_prompt: typing.Union[str, typing.List[str], NoneType] = None do_classifier_free_guidance: bool = True num_videos_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None max_sequence_length: int = 226 device: typing.Optional[torch.device] = None dtype: typing.Optional[torch.dtype] = None )

Parameters

Encodes the prompt into text encoder hidden states.

WanVACEPipeline

class diffusers.WanVACEPipeline

< source >

( tokenizer: AutoTokenizer text_encoder: UMT5EncoderModel transformer: WanVACETransformer3DModel vae: AutoencoderKLWan scheduler: FlowMatchEulerDiscreteScheduler )

Parameters

Pipeline for controllable generation using Wan.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

__call__

< source >

( prompt: typing.Union[str, typing.List[str]] = None negative_prompt: typing.Union[str, typing.List[str]] = None video: typing.Optional[typing.List[typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]]]] = None mask: typing.Optional[typing.List[typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]]]] = None reference_images: typing.Optional[typing.List[typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]]]] = None conditioning_scale: typing.Union[float, typing.List[float], torch.Tensor] = 1.0 height: int = 480 width: int = 832 num_frames: int = 81 num_inference_steps: int = 50 guidance_scale: float = 5.0 num_videos_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.Tensor] = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None output_type: typing.Optional[str] = 'np' return_dict: bool = True attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Union[typing.Callable[[int, int, typing.Dict], NoneType], diffusers.callbacks.PipelineCallback, diffusers.callbacks.MultiPipelineCallbacks, NoneType] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~WanPipelineOutput or tuple

Parameters

Returns

~WanPipelineOutput or tuple

If return_dict is True, WanPipelineOutput is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content.

The call function to the pipeline for generation.

Examples:

import torch import PIL.Image from diffusers import AutoencoderKLWan, WanVACEPipeline from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler from diffusers.utils import export_to_video, load_image def prepare_video_and_mask(first_img: PIL.Image.Image, last_img: PIL.Image.Image, height: int, width: int, num_frames: int): first_img = first_img.resize((width, height)) last_img = last_img.resize((width, height)) frames = [] frames.append(first_img)

frames.extend([PIL.Image.new("RGB", (width, height), (128, 128, 128))] * (num_frames - 2))
frames.append(last_img)
mask_black = PIL.Image.new("L", (width, height), 0)
mask_white = PIL.Image.new("L", (width, height), 255)
mask = [mask_black, *[mask_white] * (num_frames - 2), mask_black]
return frames, mask

model_id = "Wan-AI/Wan2.1-VACE-1.3B-diffusers" vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanVACEPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) flow_shift = 3.0
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift) pipe.to("cuda")

prompt = "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective." negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards" first_frame = load_image( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_first_frame.png" ... ) last_frame = load_image( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_last_frame.png>>> " ... )

height = 512 width = 512 num_frames = 81 video, mask = prepare_video_and_mask(first_frame, last_frame, height, width, num_frames)

output = pipe( ... video=video, ... mask=mask, ... prompt=prompt, ... negative_prompt=negative_prompt, ... height=height, ... width=width, ... num_frames=num_frames, ... num_inference_steps=30, ... guidance_scale=5.0, ... generator=torch.Generator().manual_seed(42), ... ).frames[0] export_to_video(output, "output.mp4", fps=16)

encode_prompt

< source >

( prompt: typing.Union[str, typing.List[str]] negative_prompt: typing.Union[str, typing.List[str], NoneType] = None do_classifier_free_guidance: bool = True num_videos_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None max_sequence_length: int = 226 device: typing.Optional[torch.device] = None dtype: typing.Optional[torch.dtype] = None )

Parameters

Encodes the prompt into text encoder hidden states.

WanVideoToVideoPipeline

class diffusers.WanVideoToVideoPipeline

< source >

( tokenizer: AutoTokenizer text_encoder: UMT5EncoderModel transformer: WanTransformer3DModel vae: AutoencoderKLWan scheduler: FlowMatchEulerDiscreteScheduler )

Parameters

Pipeline for video-to-video generation using Wan.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

__call__

< source >

( video: typing.List[PIL.Image.Image] = None prompt: typing.Union[str, typing.List[str]] = None negative_prompt: typing.Union[str, typing.List[str]] = None height: int = 480 width: int = 832 num_inference_steps: int = 50 timesteps: typing.Optional[typing.List[int]] = None guidance_scale: float = 5.0 strength: float = 0.8 num_videos_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.Tensor] = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None output_type: typing.Optional[str] = 'np' return_dict: bool = True attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Union[typing.Callable[[int, int, typing.Dict], NoneType], diffusers.callbacks.PipelineCallback, diffusers.callbacks.MultiPipelineCallbacks, NoneType] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~WanPipelineOutput or tuple

Parameters

Returns

~WanPipelineOutput or tuple

If return_dict is True, WanPipelineOutput is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content.

The call function to the pipeline for generation.

Examples:

import torch from diffusers.utils import export_to_video from diffusers import AutoencoderKLWan, WanVideoToVideoPipeline from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler

model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanVideoToVideoPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) flow_shift = 3.0
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift) pipe.to("cuda")

prompt = "A robot standing on a mountain top. The sun is setting in the background" negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards" video = load_video( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hiker.mp4" ... ) output = pipe( ... video=video, ... prompt=prompt, ... negative_prompt=negative_prompt, ... height=480, ... width=720, ... guidance_scale=5.0, ... strength=0.7, ... ).frames[0] export_to_video(output, "output.mp4", fps=16)

encode_prompt

< source >

( prompt: typing.Union[str, typing.List[str]] negative_prompt: typing.Union[str, typing.List[str], NoneType] = None do_classifier_free_guidance: bool = True num_videos_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None max_sequence_length: int = 226 device: typing.Optional[torch.device] = None dtype: typing.Optional[torch.dtype] = None )

Parameters

Encodes the prompt into text encoder hidden states.

WanPipelineOutput

class diffusers.pipelines.wan.pipeline_output.WanPipelineOutput

< source >

( frames: Tensor )

Parameters

Output class for Wan pipelines.

< > Update on GitHub