pipelines (original) (raw)
Pipelines provide a high-level, easy to use, API for running machine learning models.
Example: Instantiate pipeline using the pipeline
function.
import { pipeline } from '@huggingface/transformers';
const classifier = await pipeline('sentiment-analysis'); const output = await classifier('I love transformers!');
- pipelines
- static
* .Pipeline
* new Pipeline(options)
* .dispose() :DisposeType
* .TextClassificationPipeline
* new TextClassificationPipeline(options)
* ._call() :TextClassificationPipelineCallback
* .TokenClassificationPipeline
* new TokenClassificationPipeline(options)
* ._call() :TokenClassificationPipelineCallback
* .QuestionAnsweringPipeline
* new QuestionAnsweringPipeline(options)
* ._call() :QuestionAnsweringPipelineCallback
* .FillMaskPipeline
* new FillMaskPipeline(options)
* ._call() :FillMaskPipelineCallback
* .Text2TextGenerationPipeline
* new Text2TextGenerationPipeline(options)
* ._key :’generated_text’
* ._call() :Text2TextGenerationPipelineCallback
* .SummarizationPipeline
* new SummarizationPipeline(options)
* ._key :’summary_text’
* .TranslationPipeline
* new TranslationPipeline(options)
* ._key :’translation_text’
* .TextGenerationPipeline
* new TextGenerationPipeline(options)
* ._call() :TextGenerationPipelineCallback
* .ZeroShotClassificationPipeline
* new ZeroShotClassificationPipeline(options)
* .model :any
* ._call() :ZeroShotClassificationPipelineCallback
* .FeatureExtractionPipeline
* new FeatureExtractionPipeline(options)
* ._call() :FeatureExtractionPipelineCallback
* .ImageFeatureExtractionPipeline
* new ImageFeatureExtractionPipeline(options)
* ._call() :ImageFeatureExtractionPipelineCallback
* .AudioClassificationPipeline
* new AudioClassificationPipeline(options)
* ._call() :AudioClassificationPipelineCallback
* .ZeroShotAudioClassificationPipeline
* new ZeroShotAudioClassificationPipeline(options)
* ._call() :ZeroShotAudioClassificationPipelineCallback
* .AutomaticSpeechRecognitionPipeline
* new AutomaticSpeechRecognitionPipeline(options)
* ._call() :AutomaticSpeechRecognitionPipelineCallback
* .ImageToTextPipeline
* new ImageToTextPipeline(options)
* ._call() :ImageToTextPipelineCallback
* .ImageClassificationPipeline
* new ImageClassificationPipeline(options)
* ._call() :ImageClassificationPipelineCallback
* .ImageSegmentationPipeline
* new ImageSegmentationPipeline(options)
* ._call() :ImageSegmentationPipelineCallback
* .BackgroundRemovalPipeline
* new BackgroundRemovalPipeline(options)
* ._call() :BackgroundRemovalPipelineCallback
* .ZeroShotImageClassificationPipeline
* new ZeroShotImageClassificationPipeline(options)
* ._call() :ZeroShotImageClassificationPipelineCallback
* .ObjectDetectionPipeline
* new ObjectDetectionPipeline(options)
* ._call() :ObjectDetectionPipelineCallback
* .ZeroShotObjectDetectionPipeline
* new ZeroShotObjectDetectionPipeline(options)
* ._call() :ZeroShotObjectDetectionPipelineCallback
* .DocumentQuestionAnsweringPipeline
* new DocumentQuestionAnsweringPipeline(options)
* ._call() :DocumentQuestionAnsweringPipelineCallback
* .TextToAudioPipeline
* new TextToAudioPipeline(options)
* ._call() :TextToAudioPipelineCallback
* .ImageToImagePipeline
* new ImageToImagePipeline(options)
* ._call() :ImageToImagePipelineCallback
* .DepthEstimationPipeline
* new DepthEstimationPipeline(options)
* ._call() :DepthEstimationPipelineCallback
* .pipeline(task, [model], [options]) ⇒*
- inner
* ~ImagePipelineInputs :string
| RawImage |URL
|Blob
|HTMLCanvasElement
|OffscreenCanvas
* ~AudioPipelineInputs :string
|URL
|Float32Array
|Float64Array
* ~BoundingBox :Object
* ~Disposable ⇒Promise.<void>
* ~TextPipelineConstructorArgs :Object
* ~ImagePipelineConstructorArgs :Object
* ~TextImagePipelineConstructorArgs :Object
* ~TextClassificationPipelineType ⇒Promise.<(TextClassificationOutput|Array<TextClassificationOutput>)>
* ~TokenClassificationPipelineType ⇒Promise.<(TokenClassificationOutput|Array<TokenClassificationOutput>)>
* ~QuestionAnsweringPipelineType ⇒Promise.<(QuestionAnsweringOutput|Array<QuestionAnsweringOutput>)>
* ~FillMaskPipelineType ⇒Promise.<(FillMaskOutput|Array<FillMaskOutput>)>
* ~Text2TextGenerationPipelineType ⇒Promise.<(Text2TextGenerationOutput|Array<Text2TextGenerationOutput>)>
* ~SummarizationPipelineType ⇒Promise.<(SummarizationOutput|Array<SummarizationOutput>)>
* ~TranslationPipelineType ⇒Promise.<(TranslationOutput|Array<TranslationOutput>)>
* ~TextGenerationPipelineType ⇒Promise.<(TextGenerationOutput|Array<TextGenerationOutput>)>
* ~ZeroShotClassificationPipelineType ⇒Promise.<(ZeroShotClassificationOutput|Array<ZeroShotClassificationOutput>)>
* ~FeatureExtractionPipelineType ⇒ Promise.
* ~ImageFeatureExtractionPipelineType ⇒ Promise.
* ~AudioClassificationPipelineType ⇒Promise.<(AudioClassificationOutput|Array<AudioClassificationOutput>)>
* ~ZeroShotAudioClassificationPipelineType ⇒Promise.<(Array<ZeroShotAudioClassificationOutput>|Array<Array<ZeroShotAudioClassificationOutput>>)>
* ~Chunk :Object
* ~AutomaticSpeechRecognitionPipelineType ⇒Promise.<(AutomaticSpeechRecognitionOutput|Array<AutomaticSpeechRecognitionOutput>)>
* ~ImageToTextPipelineType ⇒Promise.<(ImageToTextOutput|Array<ImageToTextOutput>)>
* ~ImageClassificationPipelineType ⇒Promise.<(ImageClassificationOutput|Array<ImageClassificationOutput>)>
* ~ImageSegmentationPipelineType ⇒Promise.<Array<ImageSegmentationPipelineOutput>>
* ~BackgroundRemovalPipelineType ⇒Promise.<Array<RawImage>>
* ~ZeroShotImageClassificationPipelineType ⇒Promise.<(Array<ZeroShotImageClassificationOutput>|Array<Array<ZeroShotImageClassificationOutput>>)>
* ~ObjectDetectionPipelineType ⇒Promise.<(ObjectDetectionPipelineOutput|Array<ObjectDetectionPipelineOutput>)>
* ~ZeroShotObjectDetectionPipelineType ⇒Promise.<(Array<ZeroShotObjectDetectionOutput>|Array<Array<ZeroShotObjectDetectionOutput>>)>
* ~DocumentQuestionAnsweringPipelineType ⇒Promise.<(DocumentQuestionAnsweringOutput|Array<DocumentQuestionAnsweringOutput>)>
* ~TextToAudioPipelineConstructorArgs :Object
* ~TextToAudioPipelineType ⇒Promise.<TextToAudioOutput>
* ~ImageToImagePipelineType ⇒Promise.<(RawImage|Array<RawImage>)>
* ~DepthEstimationPipelineType ⇒Promise.<(DepthEstimationPipelineOutput|Array<DepthEstimationPipelineOutput>)>
* ~AllTasks :*
- static
pipelines.Pipeline
The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across different pipelines.
Kind: static class of pipelines
- .Pipeline
- new Pipeline(options)
- .dispose() :
DisposeType
new Pipeline(options)
Create a new Pipeline.
Param | Type | Default | Description |
---|---|---|---|
options | Object | An object containing the following properties: | |
[options.task] | string | The task of the pipeline. Useful for specifying subtasks. | |
[options.model] | PreTrainedModel | The model used by the pipeline. | |
[options.tokenizer] | PreTrainedTokenizer | The tokenizer used by the pipeline (if any). | |
[options.processor] | Processor | The processor used by the pipeline (if any). |
pipeline.dispose() : DisposeType
Kind: instance method of Pipeline
pipelines.TextClassificationPipeline
Text classification pipeline using any ModelForSequenceClassification
.
Example: Sentiment-analysis w/ Xenova/distilbert-base-uncased-finetuned-sst-2-english
.
const classifier = await pipeline('sentiment-analysis', 'Xenova/distilbert-base-uncased-finetuned-sst-2-english'); const output = await classifier('I love transformers!');
Example: Multilingual sentiment-analysis w/ Xenova/bert-base-multilingual-uncased-sentiment
(and return top 5 classes).
const classifier = await pipeline('sentiment-analysis', 'Xenova/bert-base-multilingual-uncased-sentiment'); const output = await classifier('Le meilleur film de tous les temps.', { top_k: 5 });
Example: Toxic comment classification w/ Xenova/toxic-bert
(and return all classes).
const classifier = await pipeline('text-classification', 'Xenova/toxic-bert'); const output = await classifier('I hate you!', { top_k: null });
Kind: static class of pipelines
- .TextClassificationPipeline
- new TextClassificationPipeline(options)
- ._call() :
TextClassificationPipelineCallback
new TextClassificationPipeline(options)
Create a new TextClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
textClassificationPipeline._call() : TextClassificationPipelineCallback
Kind: instance method of TextClassificationPipeline
pipelines.TokenClassificationPipeline
Named Entity Recognition pipeline using any ModelForTokenClassification
.
Example: Perform named entity recognition with Xenova/bert-base-NER
.
const classifier = await pipeline('token-classification', 'Xenova/bert-base-NER'); const output = await classifier('My name is Sarah and I live in London');
Example: Perform named entity recognition with Xenova/bert-base-NER
(and return all labels).
const classifier = await pipeline('token-classification', 'Xenova/bert-base-NER'); const output = await classifier('Sarah lives in the United States of America', { ignore_labels: [] });
Kind: static class of pipelines
- .TokenClassificationPipeline
- new TokenClassificationPipeline(options)
- ._call() :
TokenClassificationPipelineCallback
new TokenClassificationPipeline(options)
Create a new TokenClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
tokenClassificationPipeline._call() : TokenClassificationPipelineCallback
Kind: instance method of TokenClassificationPipeline
pipelines.QuestionAnsweringPipeline
Question Answering pipeline using any ModelForQuestionAnswering
.
Example: Run question answering with Xenova/distilbert-base-uncased-distilled-squad
.
const answerer = await pipeline('question-answering', 'Xenova/distilbert-base-uncased-distilled-squad'); const question = 'Who was Jim Henson?'; const context = 'Jim Henson was a nice puppet.'; const output = await answerer(question, context);
Kind: static class of pipelines
- .QuestionAnsweringPipeline
- new QuestionAnsweringPipeline(options)
- ._call() :
QuestionAnsweringPipelineCallback
new QuestionAnsweringPipeline(options)
Create a new QuestionAnsweringPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
questionAnsweringPipeline._call() : QuestionAnsweringPipelineCallback
Kind: instance method of QuestionAnsweringPipeline
pipelines.FillMaskPipeline
Masked language modeling prediction pipeline using any ModelWithLMHead
.
Example: Perform masked language modelling (a.k.a. “fill-mask”) with Xenova/bert-base-uncased
.
const unmasker = await pipeline('fill-mask', 'Xenova/bert-base-cased'); const output = await unmasker('The goal of life is [MASK].');
Example: Perform masked language modelling (a.k.a. “fill-mask”) with Xenova/bert-base-cased
(and return top result).
const unmasker = await pipeline('fill-mask', 'Xenova/bert-base-cased'); const output = await unmasker('The Milky Way is a [MASK] galaxy.', { top_k: 1 });
Kind: static class of pipelines
- .FillMaskPipeline
- new FillMaskPipeline(options)
- ._call() :
FillMaskPipelineCallback
new FillMaskPipeline(options)
Create a new FillMaskPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
fillMaskPipeline._call() : FillMaskPipelineCallback
Kind: instance method of FillMaskPipeline
pipelines.Text2TextGenerationPipeline
Text2TextGenerationPipeline class for generating text using a model that performs text-to-text generation tasks.
Example: Text-to-text generation w/ Xenova/LaMini-Flan-T5-783M
.
const generator = await pipeline('text2text-generation', 'Xenova/LaMini-Flan-T5-783M'); const output = await generator('how can I become more healthy?', { max_new_tokens: 100, });
Kind: static class of pipelines
- .Text2TextGenerationPipeline
- new Text2TextGenerationPipeline(options)
- ._key :
’generated_text’
- ._call() :
Text2TextGenerationPipelineCallback
new Text2TextGenerationPipeline(options)
Create a new Text2TextGenerationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
text2TextGenerationPipeline._key : ’ generated_text ’
Kind: instance property of Text2TextGenerationPipeline
text2TextGenerationPipeline._call() : Text2TextGenerationPipelineCallback
Kind: instance method of Text2TextGenerationPipeline
pipelines.SummarizationPipeline
A pipeline for summarization tasks, inheriting from Text2TextGenerationPipeline.
Example: Summarization w/ Xenova/distilbart-cnn-6-6
.
const generator = await pipeline('summarization', 'Xenova/distilbart-cnn-6-6'); const text = 'The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, ' + 'and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. ' + 'During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest ' + 'man-made structure in the world, a title it held for 41 years until the Chrysler Building in New ' + 'York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to ' + 'the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the ' + 'Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second ' + 'tallest free-standing structure in France after the Millau Viaduct.'; const output = await generator(text, { max_new_tokens: 100, });
Kind: static class of pipelines
- .SummarizationPipeline
- new SummarizationPipeline(options)
- ._key :
’summary_text’
new SummarizationPipeline(options)
Create a new SummarizationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
summarizationPipeline._key : ’ summary_text ’
Kind: instance property of SummarizationPipeline
pipelines.TranslationPipeline
Translates text from one language to another.
Example: Multilingual translation w/ Xenova/nllb-200-distilled-600M
.
See herefor the full list of languages and their corresponding codes.
const translator = await pipeline('translation', 'Xenova/nllb-200-distilled-600M'); const output = await translator('जीवन एक चॉकलेट बॉक्स की तरह है।', { src_lang: 'hin_Deva', tgt_lang: 'fra_Latn', });
Example: Multilingual translation w/ Xenova/m2m100_418M
.
See herefor the full list of languages and their corresponding codes.
const translator = await pipeline('translation', 'Xenova/m2m100_418M'); const output = await translator('生活就像一盒巧克力。', { src_lang: 'zh', tgt_lang: 'en', });
Example: Multilingual translation w/ Xenova/mbart-large-50-many-to-many-mmt
.
See herefor the full list of languages and their corresponding codes.
const translator = await pipeline('translation', 'Xenova/mbart-large-50-many-to-many-mmt'); const output = await translator('संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है', { src_lang: 'hi_IN', tgt_lang: 'fr_XX', });
Kind: static class of pipelines
- .TranslationPipeline
- new TranslationPipeline(options)
- ._key :
’translation_text’
new TranslationPipeline(options)
Create a new TranslationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
translationPipeline._key : ’ translation_text ’
Kind: instance property of TranslationPipeline
pipelines.TextGenerationPipeline
Language generation pipeline using any ModelWithLMHead
or ModelForCausalLM
. This pipeline predicts the words that will follow a specified text prompt. NOTE: For the full list of generation parameters, see GenerationConfig.
Example: Text generation with Xenova/distilgpt2
(default settings).
const generator = await pipeline('text-generation', 'Xenova/distilgpt2'); const text = 'I enjoy walking with my cute dog,'; const output = await generator(text);
Example: Text generation with Xenova/distilgpt2
(custom settings).
const generator = await pipeline('text-generation', 'Xenova/distilgpt2'); const text = 'Once upon a time, there was'; const output = await generator(text, { temperature: 2, max_new_tokens: 10, repetition_penalty: 1.5, no_repeat_ngram_size: 2, num_beams: 2, num_return_sequences: 2, });
Example: Run code generation with Xenova/codegen-350M-mono
.
const generator = await pipeline('text-generation', 'Xenova/codegen-350M-mono'); const text = 'def fib(n):'; const output = await generator(text, { max_new_tokens: 44, });
Kind: static class of pipelines
- .TextGenerationPipeline
- new TextGenerationPipeline(options)
- ._call() :
TextGenerationPipelineCallback
new TextGenerationPipeline(options)
Create a new TextGenerationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
textGenerationPipeline._call() : TextGenerationPipelineCallback
Kind: instance method of TextGenerationPipeline
pipelines.ZeroShotClassificationPipeline
NLI-based zero-shot classification pipeline using a ModelForSequenceClassification
trained on NLI (natural language inference) tasks. Equivalent of text-classification
pipelines, but these models don’t require a hardcoded number of potential classes, they can be chosen at runtime. It usually means it’s slower but it is much more flexible.
Example: Zero shot classification with Xenova/mobilebert-uncased-mnli
.
const classifier = await pipeline('zero-shot-classification', 'Xenova/mobilebert-uncased-mnli'); const text = 'Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.'; const labels = [ 'mobile', 'billing', 'website', 'account access' ]; const output = await classifier(text, labels);
Example: Zero shot classification with Xenova/nli-deberta-v3-xsmall
(multi-label).
const classifier = await pipeline('zero-shot-classification', 'Xenova/nli-deberta-v3-xsmall'); const text = 'I have a problem with my iphone that needs to be resolved asap!'; const labels = [ 'urgent', 'not urgent', 'phone', 'tablet', 'computer' ]; const output = await classifier(text, labels, { multi_label: true });
Kind: static class of pipelines
- .ZeroShotClassificationPipeline
- new ZeroShotClassificationPipeline(options)
- .model :
any
- ._call() :
ZeroShotClassificationPipelineCallback
new ZeroShotClassificationPipeline(options)
Create a new ZeroShotClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotClassificationPipeline.model : any
Kind: instance property of ZeroShotClassificationPipeline
zeroShotClassificationPipeline._call() : ZeroShotClassificationPipelineCallback
Kind: instance method of ZeroShotClassificationPipeline
pipelines.FeatureExtractionPipeline
Feature extraction pipeline using no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks.
Example: Run feature extraction with bert-base-uncased
(without pooling/normalization).
const extractor = await pipeline('feature-extraction', 'Xenova/bert-base-uncased', { revision: 'default' }); const output = await extractor('This is a simple test.');
Example: Run feature extraction with bert-base-uncased
(with pooling/normalization).
const extractor = await pipeline('feature-extraction', 'Xenova/bert-base-uncased', { revision: 'default' }); const output = await extractor('This is a simple test.', { pooling: 'mean', normalize: true });
Example: Calculating embeddings with sentence-transformers
models.
const extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2'); const output = await extractor('This is a simple test.', { pooling: 'mean', normalize: true });
Example: Calculating binary embeddings with sentence-transformers
models.
const extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2'); const output = await extractor('This is a simple test.', { pooling: 'mean', quantize: true, precision: 'binary' });
Kind: static class of pipelines
- .FeatureExtractionPipeline
- new FeatureExtractionPipeline(options)
- ._call() :
FeatureExtractionPipelineCallback
new FeatureExtractionPipeline(options)
Create a new FeatureExtractionPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
featureExtractionPipeline._call() : FeatureExtractionPipelineCallback
Kind: instance method of FeatureExtractionPipeline
pipelines.ImageFeatureExtractionPipeline
Image feature extraction pipeline using no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks.
Example: Perform image feature extraction with Xenova/vit-base-patch16-224-in21k
.
const image_feature_extractor = await pipeline('image-feature-extraction', 'Xenova/vit-base-patch16-224-in21k'); const url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png'; const features = await image_feature_extractor(url);
Example: Compute image embeddings with Xenova/clip-vit-base-patch32
.
const image_feature_extractor = await pipeline('image-feature-extraction', 'Xenova/clip-vit-base-patch32'); const url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png'; const features = await image_feature_extractor(url);
Kind: static class of pipelines
- .ImageFeatureExtractionPipeline
- new ImageFeatureExtractionPipeline(options)
- ._call() :
ImageFeatureExtractionPipelineCallback
new ImageFeatureExtractionPipeline(options)
Create a new ImageFeatureExtractionPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageFeatureExtractionPipeline._call() : ImageFeatureExtractionPipelineCallback
Kind: instance method of ImageFeatureExtractionPipeline
pipelines.AudioClassificationPipeline
Audio classification pipeline using any AutoModelForAudioClassification
. This pipeline predicts the class of a raw waveform or an audio file.
Example: Perform audio classification with Xenova/wav2vec2-large-xlsr-53-gender-recognition-librispeech
.
const classifier = await pipeline('audio-classification', 'Xenova/wav2vec2-large-xlsr-53-gender-recognition-librispeech'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav'; const output = await classifier(url);
Example: Perform audio classification with Xenova/ast-finetuned-audioset-10-10-0.4593
and return top 4 results.
const classifier = await pipeline('audio-classification', 'Xenova/ast-finetuned-audioset-10-10-0.4593'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cat_meow.wav'; const output = await classifier(url, { top_k: 4 });
Kind: static class of pipelines
- .AudioClassificationPipeline
- new AudioClassificationPipeline(options)
- ._call() :
AudioClassificationPipelineCallback
new AudioClassificationPipeline(options)
Create a new AudioClassificationPipeline.
Param | Type | Description |
---|---|---|
options | AudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
audioClassificationPipeline._call() : AudioClassificationPipelineCallback
Kind: instance method of AudioClassificationPipeline
pipelines.ZeroShotAudioClassificationPipeline
Zero shot audio classification pipeline using ClapModel
. This pipeline predicts the class of an audio when you provide an audio and a set of candidate_labels
.
Example: Perform zero-shot audio classification with Xenova/clap-htsat-unfused
.
const classifier = await pipeline('zero-shot-audio-classification', 'Xenova/clap-htsat-unfused'); const audio = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/dog_barking.wav'; const candidate_labels = ['dog', 'vaccum cleaner']; const scores = await classifier(audio, candidate_labels);
Kind: static class of pipelines
- .ZeroShotAudioClassificationPipeline
- new ZeroShotAudioClassificationPipeline(options)
- ._call() :
ZeroShotAudioClassificationPipelineCallback
new ZeroShotAudioClassificationPipeline(options)
Create a new ZeroShotAudioClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextAudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotAudioClassificationPipeline._call() : ZeroShotAudioClassificationPipelineCallback
Kind: instance method of ZeroShotAudioClassificationPipeline
pipelines.AutomaticSpeechRecognitionPipeline
Pipeline that aims at extracting spoken text contained within some audio.
Example: Transcribe English.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav'; const output = await transcriber(url);
Example: Transcribe English w/ timestamps.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav'; const output = await transcriber(url, { return_timestamps: true });
Example: Transcribe English w/ word-level timestamps.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav'; const output = await transcriber(url, { return_timestamps: 'word' });
Example: Transcribe French.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-small'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/french-audio.mp3'; const output = await transcriber(url, { language: 'french', task: 'transcribe' });
Example: Translate French to English.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-small'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/french-audio.mp3'; const output = await transcriber(url, { language: 'french', task: 'translate' });
Example: Transcribe/translate audio longer than 30 seconds.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/ted_60.wav'; const output = await transcriber(url, { chunk_length_s: 30, stride_length_s: 5 });
Kind: static class of pipelines
- .AutomaticSpeechRecognitionPipeline
- new AutomaticSpeechRecognitionPipeline(options)
- ._call() :
AutomaticSpeechRecognitionPipelineCallback
new AutomaticSpeechRecognitionPipeline(options)
Create a new AutomaticSpeechRecognitionPipeline.
Param | Type | Description |
---|---|---|
options | TextAudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
automaticSpeechRecognitionPipeline._call() : AutomaticSpeechRecognitionPipelineCallback
Kind: instance method of AutomaticSpeechRecognitionPipeline
pipelines.ImageToTextPipeline
Image To Text pipeline using a AutoModelForVision2Seq
. This pipeline predicts a caption for a given image.
Example: Generate a caption for an image w/ Xenova/vit-gpt2-image-captioning
.
const captioner = await pipeline('image-to-text', 'Xenova/vit-gpt2-image-captioning'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg'; const output = await captioner(url);
Example: Optical Character Recognition (OCR) w/ Xenova/trocr-small-handwritten
.
const captioner = await pipeline('image-to-text', 'Xenova/trocr-small-handwritten'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/handwriting.jpg'; const output = await captioner(url);
Kind: static class of pipelines
- .ImageToTextPipeline
- new ImageToTextPipeline(options)
- ._call() :
ImageToTextPipelineCallback
new ImageToTextPipeline(options)
Create a new ImageToTextPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageToTextPipeline._call() : ImageToTextPipelineCallback
Kind: instance method of ImageToTextPipeline
pipelines.ImageClassificationPipeline
Image classification pipeline using any AutoModelForImageClassification
. This pipeline predicts the class of an image.
Example: Classify an image.
const classifier = await pipeline('image-classification', 'Xenova/vit-base-patch16-224'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg'; const output = await classifier(url);
Example: Classify an image and return top n
classes.
const classifier = await pipeline('image-classification', 'Xenova/vit-base-patch16-224'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg'; const output = await classifier(url, { top_k: 3 });
Example: Classify an image and return all classes.
const classifier = await pipeline('image-classification', 'Xenova/vit-base-patch16-224'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg'; const output = await classifier(url, { top_k: 0 });
Kind: static class of pipelines
- .ImageClassificationPipeline
- new ImageClassificationPipeline(options)
- ._call() :
ImageClassificationPipelineCallback
new ImageClassificationPipeline(options)
Create a new ImageClassificationPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageClassificationPipeline._call() : ImageClassificationPipelineCallback
Kind: instance method of ImageClassificationPipeline
pipelines.ImageSegmentationPipeline
Image segmentation pipeline using any AutoModelForXXXSegmentation
. This pipeline predicts masks of objects and their classes.
Example: Perform image segmentation with Xenova/detr-resnet-50-panoptic
.
const segmenter = await pipeline('image-segmentation', 'Xenova/detr-resnet-50-panoptic'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg'; const output = await segmenter(url);
Kind: static class of pipelines
- .ImageSegmentationPipeline
- new ImageSegmentationPipeline(options)
- ._call() :
ImageSegmentationPipelineCallback
new ImageSegmentationPipeline(options)
Create a new ImageSegmentationPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageSegmentationPipeline._call() : ImageSegmentationPipelineCallback
Kind: instance method of ImageSegmentationPipeline
pipelines.BackgroundRemovalPipeline
Background removal pipeline using certain AutoModelForXXXSegmentation
. This pipeline removes the backgrounds of images.
Example: Perform background removal with Xenova/modnet
.
const segmenter = await pipeline('background-removal', 'Xenova/modnet'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/portrait-of-woman_small.jpg'; const output = await segmenter(url);
Kind: static class of pipelines
- .BackgroundRemovalPipeline
- new BackgroundRemovalPipeline(options)
- ._call() :
BackgroundRemovalPipelineCallback
new BackgroundRemovalPipeline(options)
Create a new BackgroundRemovalPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
backgroundRemovalPipeline._call() : BackgroundRemovalPipelineCallback
Kind: instance method of BackgroundRemovalPipeline
pipelines.ZeroShotImageClassificationPipeline
Zero shot image classification pipeline. This pipeline predicts the class of an image when you provide an image and a set of candidate_labels
.
Example: Zero shot image classification w/ Xenova/clip-vit-base-patch32
.
const classifier = await pipeline('zero-shot-image-classification', 'Xenova/clip-vit-base-patch32'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg'; const output = await classifier(url, ['tiger', 'horse', 'dog']);
Kind: static class of pipelines
- .ZeroShotImageClassificationPipeline
- new ZeroShotImageClassificationPipeline(options)
- ._call() :
ZeroShotImageClassificationPipelineCallback
new ZeroShotImageClassificationPipeline(options)
Create a new ZeroShotImageClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotImageClassificationPipeline._call() : ZeroShotImageClassificationPipelineCallback
Kind: instance method of ZeroShotImageClassificationPipeline
pipelines.ObjectDetectionPipeline
Object detection pipeline using any AutoModelForObjectDetection
. This pipeline predicts bounding boxes of objects and their classes.
Example: Run object-detection with Xenova/detr-resnet-50
.
const detector = await pipeline('object-detection', 'Xenova/detr-resnet-50'); const img = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg'; const output = await detector(img, { threshold: 0.9 });
Kind: static class of pipelines
- .ObjectDetectionPipeline
- new ObjectDetectionPipeline(options)
- ._call() :
ObjectDetectionPipelineCallback
new ObjectDetectionPipeline(options)
Create a new ObjectDetectionPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
objectDetectionPipeline._call() : ObjectDetectionPipelineCallback
Kind: instance method of ObjectDetectionPipeline
pipelines.ZeroShotObjectDetectionPipeline
Zero-shot object detection pipeline. This pipeline predicts bounding boxes of objects when you provide an image and a set of candidate_labels
.
Example: Zero-shot object detection w/ Xenova/owlvit-base-patch32
.
const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlvit-base-patch32'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/astronaut.png'; const candidate_labels = ['human face', 'rocket', 'helmet', 'american flag']; const output = await detector(url, candidate_labels);
Example: Zero-shot object detection w/ Xenova/owlvit-base-patch32
(returning top 4 matches and setting a threshold).
const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlvit-base-patch32'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/beach.png'; const candidate_labels = ['hat', 'book', 'sunglasses', 'camera']; const output = await detector(url, candidate_labels, { top_k: 4, threshold: 0.05 });
Kind: static class of pipelines
- .ZeroShotObjectDetectionPipeline
- new ZeroShotObjectDetectionPipeline(options)
- ._call() :
ZeroShotObjectDetectionPipelineCallback
new ZeroShotObjectDetectionPipeline(options)
Create a new ZeroShotObjectDetectionPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotObjectDetectionPipeline._call() : ZeroShotObjectDetectionPipelineCallback
Kind: instance method of ZeroShotObjectDetectionPipeline
pipelines.DocumentQuestionAnsweringPipeline
Document Question Answering pipeline using any AutoModelForDocumentQuestionAnswering
. The inputs/outputs are similar to the (extractive) question answering pipeline; however, the pipeline takes an image (and optional OCR’d words/boxes) as input instead of text context.
Example: Answer questions about a document with Xenova/donut-base-finetuned-docvqa
.
const qa_pipeline = await pipeline('document-question-answering', 'Xenova/donut-base-finetuned-docvqa'); const image = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/invoice.png'; const question = 'What is the invoice number?'; const output = await qa_pipeline(image, question);
Kind: static class of pipelines
- .DocumentQuestionAnsweringPipeline
- new DocumentQuestionAnsweringPipeline(options)
- ._call() :
DocumentQuestionAnsweringPipelineCallback
new DocumentQuestionAnsweringPipeline(options)
Create a new DocumentQuestionAnsweringPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
documentQuestionAnsweringPipeline._call() : DocumentQuestionAnsweringPipelineCallback
Kind: instance method of DocumentQuestionAnsweringPipeline
pipelines.TextToAudioPipeline
Text-to-audio generation pipeline using any AutoModelForTextToWaveform
or AutoModelForTextToSpectrogram
. This pipeline generates an audio file from an input text and optional other conditional inputs.
Example: Generate audio from text with Xenova/speecht5_tts
.
const synthesizer = await pipeline('text-to-speech', 'Xenova/speecht5_tts', { quantized: false }); const speaker_embeddings = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin'; const out = await synthesizer('Hello, my dog is cute', { speaker_embeddings });
You can then save the audio to a .wav file with the wavefile
package:
import wavefile from 'wavefile'; import fs from 'fs';
const wav = new wavefile.WaveFile(); wav.fromScratch(1, out.sampling_rate, '32f', out.audio); fs.writeFileSync('out.wav', wav.toBuffer());
Example: Multilingual speech generation with Xenova/mms-tts-fra
. See here for the full list of available languages (1107).
const synthesizer = await pipeline('text-to-speech', 'Xenova/mms-tts-fra'); const out = await synthesizer('Bonjour');
Kind: static class of pipelines
- .TextToAudioPipeline
- new TextToAudioPipeline(options)
- ._call() :
TextToAudioPipelineCallback
new TextToAudioPipeline(options)
Create a new TextToAudioPipeline.
Param | Type | Description |
---|---|---|
options | TextToAudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
textToAudioPipeline._call() : TextToAudioPipelineCallback
Kind: instance method of TextToAudioPipeline
pipelines.ImageToImagePipeline
Image to Image pipeline using any AutoModelForImageToImage
. This pipeline generates an image based on a previous image input.
Example: Super-resolution w/ Xenova/swin2SR-classical-sr-x2-64
const upscaler = await pipeline('image-to-image', 'Xenova/swin2SR-classical-sr-x2-64'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/butterfly.jpg'; const output = await upscaler(url);
Kind: static class of pipelines
- .ImageToImagePipeline
- new ImageToImagePipeline(options)
- ._call() :
ImageToImagePipelineCallback
new ImageToImagePipeline(options)
Create a new ImageToImagePipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageToImagePipeline._call() : ImageToImagePipelineCallback
Kind: instance method of ImageToImagePipeline
pipelines.DepthEstimationPipeline
Depth estimation pipeline using any AutoModelForDepthEstimation
. This pipeline predicts the depth of an image.
Example: Depth estimation w/ Xenova/dpt-hybrid-midas
const depth_estimator = await pipeline('depth-estimation', 'Xenova/dpt-hybrid-midas'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg'; const out = await depth_estimator(url);
Kind: static class of pipelines
- .DepthEstimationPipeline
- new DepthEstimationPipeline(options)
- ._call() :
DepthEstimationPipelineCallback
new DepthEstimationPipeline(options)
Create a new DepthEstimationPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
depthEstimationPipeline._call() : DepthEstimationPipelineCallback
Kind: instance method of DepthEstimationPipeline
pipelines.pipeline(task, [model], [options]) ⇒ *
Utility factory method to build a Pipeline
object.
Kind: static method of pipelines
Returns: *
- A Pipeline object for the specified task.
Throws:
Error
If an unsupported pipeline is requested.
Param | Type | Default | Description |
---|---|---|---|
task | T | The task defining which pipeline will be returned. Currently accepted tasks are: "audio-classification": will return a AudioClassificationPipeline. "automatic-speech-recognition": will return a AutomaticSpeechRecognitionPipeline. "depth-estimation": will return a DepthEstimationPipeline. "document-question-answering": will return a DocumentQuestionAnsweringPipeline. "feature-extraction": will return a FeatureExtractionPipeline. "fill-mask": will return a FillMaskPipeline. "image-classification": will return a ImageClassificationPipeline. "image-segmentation": will return a ImageSegmentationPipeline. "image-to-text": will return a ImageToTextPipeline. "object-detection": will return a ObjectDetectionPipeline. "question-answering": will return a QuestionAnsweringPipeline. "summarization": will return a SummarizationPipeline. "text2text-generation": will return a Text2TextGenerationPipeline. "text-classification" (alias "sentiment-analysis" available): will return a TextClassificationPipeline. "text-generation": will return a TextGenerationPipeline. "token-classification" (alias "ner" available): will return a TokenClassificationPipeline. "translation": will return a TranslationPipeline. "translation_xx_to_yy": will return a TranslationPipeline. "zero-shot-classification": will return a ZeroShotClassificationPipeline. "zero-shot-audio-classification": will return a ZeroShotAudioClassificationPipeline. "zero-shot-image-classification": will return a ZeroShotImageClassificationPipeline. "zero-shot-object-detection": will return a ZeroShotObjectDetectionPipeline. | |
[model] | string | null | The name of the pre-trained model to use. If not specified, the default model for the task will be used. |
[options] | * | Optional parameters for the pipeline. |
pipelines~ImagePipelineInputs : string
| RawImage
| URL
| Blob
| HTMLCanvasElement
| OffscreenCanvas
Kind: inner typedef of pipelines
pipelines~AudioPipelineInputs : string
| URL
| Float32Array
| Float64Array
Kind: inner typedef of pipelines
pipelines~BoundingBox : Object
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
xmin | number | The minimum x coordinate of the bounding box. |
ymin | number | The minimum y coordinate of the bounding box. |
xmax | number | The maximum x coordinate of the bounding box. |
ymax | number | The maximum y coordinate of the bounding box. |
pipelines~Disposable ⇒ Promise. < void >
Kind: inner typedef of pipelines
Returns: Promise.<void>
- A promise that resolves when the item has been disposed.
Properties
Name | Type | Description |
---|---|---|
dispose | DisposeType | A promise that resolves when the pipeline has been disposed. |
pipelines~TextPipelineConstructorArgs : Object
An object used to instantiate a text-based pipeline.
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model used by the pipeline. |
tokenizer | PreTrainedTokenizer | The tokenizer used by the pipeline. |
pipelines~ImagePipelineConstructorArgs : Object
An object used to instantiate an audio-based pipeline.
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model used by the pipeline. |
processor | Processor | The processor used by the pipeline. |
pipelines~TextImagePipelineConstructorArgs : Object
An object used to instantiate a text- and audio-based pipeline.
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model used by the pipeline. |
tokenizer | PreTrainedTokenizer | The tokenizer used by the pipeline. |
processor | Processor | The processor used by the pipeline. |
pipelines~TextClassificationPipelineType ⇒ Promise. < (TextClassificationOutput|Array < TextClassificationOutput > ) >
Parameters specific to text classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(TextClassificationOutput|Array<TextClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
texts | string | Array | The input text(s) to be classified. |
[options] | TextClassificationPipelineOptions | The options to use for text classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label predicted. | |
score | number | The corresponding probability. | |
[top_k] | number | 1 | The number of top predictions to be returned. |
pipelines~TokenClassificationPipelineType ⇒ Promise. < (TokenClassificationOutput|Array < TokenClassificationOutput > ) >
Parameters specific to token classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(TokenClassificationOutput|Array<TokenClassificationOutput>)>
- The result.
Param | Type | Description |
---|---|---|
texts | string | Array | One or several texts (or one list of texts) for token classification. |
[options] | TokenClassificationPipelineOptions | The options to use for token classification. |
Properties
Name | Type | Description |
---|---|---|
word | string | The token/word classified. This is obtained by decoding the selected tokens. |
score | number | The corresponding probability for entity. |
entity | string | The entity predicted for that token/word. |
index | number | The index of the corresponding token in the sentence. |
[start] | number | The index of the start of the corresponding entity in the sentence. |
[end] | number | The index of the end of the corresponding entity in the sentence. |
[ignore_labels] | Array. | A list of labels to ignore. |
pipelines~QuestionAnsweringPipelineType ⇒ Promise. < (QuestionAnsweringOutput|Array < QuestionAnsweringOutput > ) >
Parameters specific to question answering pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(QuestionAnsweringOutput|Array<QuestionAnsweringOutput>)>
- An array or object containing the predicted answers and scores.
Param | Type | Description |
---|---|---|
question | string | Array | One or several question(s) (must be used in conjunction with the context argument). |
context | string | Array | One or several context(s) associated with the question(s) (must be used in conjunction with the question argument). |
[options] | QuestionAnsweringPipelineOptions | The options to use for question answering. |
Properties
Name | Type | Default | Description |
---|---|---|---|
score | number | The probability associated to the answer. | |
[start] | number | The character start index of the answer (in the tokenized version of the input). | |
[end] | number | The character end index of the answer (in the tokenized version of the input). | |
answer | string | The answer to the question. | |
[top_k] | number | 1 | The number of top answer predictions to be returned. |
pipelines~FillMaskPipelineType ⇒ Promise. < (FillMaskOutput|Array < FillMaskOutput > ) >
Parameters specific to fill mask pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(FillMaskOutput|Array<FillMaskOutput>)>
- An array of objects containing the score, predicted token, predicted token string, and the sequence with the predicted token filled in, or an array of such arrays (one for each input text). If only one input text is given, the output will be an array of objects.
Throws:
Error
When the mask token is not found in the input text.
Param | Type | Description |
---|---|---|
texts | string | Array | One or several texts (or one list of prompts) with masked tokens. |
[options] | FillMaskPipelineOptions | The options to use for masked language modelling. |
Properties
Name | Type | Default | Description |
---|---|---|---|
sequence | string | The corresponding input with the mask token prediction. | |
score | number | The corresponding probability. | |
token | number | The predicted token id (to replace the masked one). | |
token_str | string | The predicted token (to replace the masked one). | |
[top_k] | number | 5 | When passed, overrides the number of predictions to return. |
pipelines~Text2TextGenerationPipelineType ⇒ Promise. < (Text2TextGenerationOutput|Array < Text2TextGenerationOutput > ) >
Kind: inner typedef of pipelines
Param | Type | Description |
---|---|---|
texts | string | Array | Input text for the encoder. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
generated_text | string | The generated text. |
pipelines~SummarizationPipelineType ⇒ Promise. < (SummarizationOutput|Array < SummarizationOutput > ) >
Kind: inner typedef of pipelines
Param | Type | Description |
---|---|---|
texts | string | Array | One or several articles (or one list of articles) to summarize. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
summary_text | string | The summary text. |
pipelines~TranslationPipelineType ⇒ Promise. < (TranslationOutput|Array < TranslationOutput > ) >
Kind: inner typedef of pipelines
Param | Type | Description |
---|---|---|
texts | string | Array | Texts to be translated. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
translation_text | string | The translated text. |
pipelines~TextGenerationPipelineType ⇒ Promise. < (TextGenerationOutput|Array < TextGenerationOutput > ) >
Parameters specific to text-generation pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(TextGenerationOutput|Array<TextGenerationOutput>)>
- An array or object containing the generated texts.
Param | Type | Description | ||
---|---|---|---|---|
texts | string | Array | Chat | Array | One or several prompts (or one list of prompts) to complete. |
[options] | Partial. | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Default | Description |
---|---|---|---|
generated_text | string | Chat | The generated text. | |
[add_special_tokens] | boolean | Whether or not to add special tokens when tokenizing the sequences. | |
[return_full_text] | boolean | true | If set to false only added text is returned, otherwise the full text is returned. |
pipelines~ZeroShotClassificationPipelineType ⇒ Promise. < (ZeroShotClassificationOutput|Array < ZeroShotClassificationOutput > ) >
Parameters specific to zero-shot classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(ZeroShotClassificationOutput|Array<ZeroShotClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
texts | string | Array | The sequence(s) to classify, will be truncated if the model input is too large. |
candidate_labels | string | Array | The set of possible class labels to classify each sequence into. Can be a single label, a string of comma-separated labels, or a list of labels. |
[options] | ZeroShotClassificationPipelineOptions | The options to use for zero-shot classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
sequence | string | The sequence for which this is the output. | |
labels | Array. | The labels sorted by order of likelihood. | |
scores | Array. | The probabilities for each of the labels. | |
[hypothesis_template] | string | ""This example is {}."" | The template used to turn each candidate label into an NLI-style hypothesis. The candidate label will replace the {} placeholder. |
[multi_label] | boolean | false | Whether or not multiple candidate labels can be true. If false, the scores are normalized such that the sum of the label likelihoods for each sequence is 1. If true, the labels are considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment score vs. the contradiction score. |
pipelines~FeatureExtractionPipelineType ⇒ Promise. < Tensor >
Parameters specific to feature extraction pipelines.
Kind: inner typedef of pipelines
Returns: Promise. - The features computed by the model.
Param | Type | Description |
---|---|---|
texts | string | Array | One or several texts (or one list of texts) to get the features of. |
[options] | FeatureExtractionPipelineOptions | The options to use for feature extraction. |
Properties
Name | Type | Default | Description | |
---|---|---|---|---|
[pooling] | 'none' | 'mean' | 'cls' | "none" | The pooling method to use. |
[normalize] | boolean | false | Whether or not to normalize the embeddings in the last dimension. | |
[quantize] | boolean | false | Whether or not to quantize the embeddings. | |
[precision] | 'binary' | 'ubinary' | 'binary' | The precision to use for quantization. |
pipelines~ImageFeatureExtractionPipelineType ⇒ Promise. < Tensor >
Parameters specific to image feature extraction pipelines.
Kind: inner typedef of pipelines
Returns: Promise. - The image features computed by the model.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | One or several images (or one list of images) to get the features of. |
[options] | ImageFeatureExtractionPipelineOptions | The options to use for image feature extraction. |
Properties
Name | Type | Default | Description |
---|---|---|---|
[pool] | boolean | Whether or not to return the pooled output. If set to false, the model will return the raw hidden states. |
pipelines~AudioClassificationPipelineType ⇒ Promise. < (AudioClassificationOutput|Array < AudioClassificationOutput > ) >
Parameters specific to audio classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(AudioClassificationOutput|Array<AudioClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
audio | AudioPipelineInputs | The input audio file(s) to be classified. The input is either: string or URL that is the filename/URL of the audio file, the file will be read at the processor's sampling rate to get the waveform using the AudioContext API. If AudioContext is not available, you should pass the raw waveform in as a Float32Array of shape (n, ). Float32Array or Float64Array of shape (n, ), representing the raw audio at the correct sampling rate (no further check will be done). |
[options] | AudioClassificationPipelineOptions | The options to use for audio classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label predicted. | |
score | number | The corresponding probability. | |
[top_k] | number | 5 | The number of top labels that will be returned by the pipeline. If the provided number is null or higher than the number of labels available in the model configuration, it will default to the number of labels. |
pipelines~ZeroShotAudioClassificationPipelineType ⇒ Promise. < (Array < ZeroShotAudioClassificationOutput > |Array < Array < ZeroShotAudioClassificationOutput > > ) >
Parameters specific to zero-shot audio classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(Array<ZeroShotAudioClassificationOutput>|Array<Array<ZeroShotAudioClassificationOutput>>)>
- An array of objects containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
audio | AudioPipelineInputs | The input audio file(s) to be classified. The input is either: string or URL that is the filename/URL of the audio file, the file will be read at the processor's sampling rate to get the waveform using the AudioContext API. If AudioContext is not available, you should pass the raw waveform in as a Float32Array of shape (n, ). Float32Array or Float64Array of shape (n, ), representing the raw audio at the correct sampling rate (no further check will be done). |
candidate_labels | Array. | The candidate labels for this audio. |
[options] | ZeroShotAudioClassificationPipelineOptions | The options to use for zero-shot audio classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label identified by the model. It is one of the suggested candidate_label. | |
score | number | The score attributed by the model for that label (between 0 and 1). | |
[hypothesis_template] | string | ""This is a sound of {}."" | The sentence used in conjunction with candidate_labelsto attempt the audio classification by replacing the placeholder with the candidate_labels. Then likelihood is estimated by using logits_per_audio. |
pipelines~Chunk : Object
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
timestamp | * | The start and end timestamp of the chunk in seconds. |
text | string | The recognized text. |
pipelines~AutomaticSpeechRecognitionPipelineType ⇒ Promise. < (AutomaticSpeechRecognitionOutput|Array < AutomaticSpeechRecognitionOutput > ) >
Parameters specific to automatic-speech-recognition pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(AutomaticSpeechRecognitionOutput|Array<AutomaticSpeechRecognitionOutput>)>
- An object containing the transcription text and optionally timestamps if return_timestamps
is true
.
Param | Type | Description |
---|---|---|
audio | AudioPipelineInputs | The input audio file(s) to be transcribed. The input is either: string or URL that is the filename/URL of the audio file, the file will be read at the processor's sampling rate to get the waveform using the AudioContext API. If AudioContext is not available, you should pass the raw waveform in as a Float32Array of shape (n, ). Float32Array or Float64Array of shape (n, ), representing the raw audio at the correct sampling rate (no further check will be done). |
[options] | Partial. | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
text | string | The recognized text. |
[chunks] | Array. | When using return_timestamps, the chunks will become a list containing all the various text chunks identified by the model. |
[return_timestamps] | boolean | 'word' | Whether to return timestamps or not. Default is false. |
[chunk_length_s] | number | The length of audio chunks to process in seconds. Default is 0 (no chunking). |
[stride_length_s] | number | The length of overlap between consecutive audio chunks in seconds. If not provided, defaults to chunk_length_s / 6. |
[force_full_sequences] | boolean | Whether to force outputting full sequences or not. Default is false. |
[language] | string | The source language. Default is null, meaning it should be auto-detected. Use this to potentially improve performance if the source language is known. |
[task] | string | The task to perform. Default is null, meaning it should be auto-detected. |
[num_frames] | number | The number of frames in the input audio. |
pipelines~ImageToTextPipelineType ⇒ Promise. < (ImageToTextOutput|Array < ImageToTextOutput > ) >
Kind: inner typedef of pipelines
Returns: Promise.<(ImageToTextOutput|Array<ImageToTextOutput>)>
- An object (or array of objects) containing the generated text(s).
Param | Type | Description |
---|---|---|
texts | ImagePipelineInputs | The images to be captioned. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
generated_text | string | The generated text. |
pipelines~ImageClassificationPipelineType ⇒ Promise. < (ImageClassificationOutput|Array < ImageClassificationOutput > ) >
Parameters specific to image classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(ImageClassificationOutput|Array<ImageClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images(s) to be classified. |
[options] | ImageClassificationPipelineOptions | The options to use for image classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label identified by the model. | |
score | number | The score attributed by the model for that label. | |
[top_k] | number | 1 | The number of top labels that will be returned by the pipeline. |
pipelines~ImageSegmentationPipelineType ⇒ Promise. < Array < ImageSegmentationPipelineOutput > >
Parameters specific to image segmentation pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<Array<ImageSegmentationPipelineOutput>>
- The annotated segments.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
[options] | ImageSegmentationPipelineOptions | The options to use for image segmentation. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | null | The label of the segment. | |
score | number | null | The score of the segment. | |
mask | RawImage | The mask of the segment. | |
[threshold] | number | 0.5 | Probability threshold to filter out predicted masks. |
[mask_threshold] | number | 0.5 | Threshold to use when turning the predicted masks into binary values. |
[overlap_mask_area_threshold] | number | 0.8 | Mask overlap threshold to eliminate small, disconnected segments. |
[subtask] | null | string | Segmentation task to be performed. One of [panoptic, instance, and semantic], depending on model capabilities. If not set, the pipeline will attempt to resolve (in that order). | |
[label_ids_to_fuse] | Array. | List of label ids to fuse. If not set, do not fuse any labels. | |
[target_sizes] | Array.<Array> | List of target sizes for the input images. If not set, use the original image sizes. |
pipelines~BackgroundRemovalPipelineType ⇒ Promise. < Array < RawImage > >
Parameters specific to image segmentation pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<Array<RawImage>>
- The images with the background removed.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
[options] | BackgroundRemovalPipelineOptions | The options to use for image segmentation. |
pipelines~ZeroShotImageClassificationPipelineType ⇒ Promise. < (Array < ZeroShotImageClassificationOutput > |Array < Array < ZeroShotImageClassificationOutput > > ) >
Parameters specific to zero-shot image classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(Array<ZeroShotImageClassificationOutput>|Array<Array<ZeroShotImageClassificationOutput>>)>
- An array of objects containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
candidate_labels | Array. | The candidate labels for this image. |
[options] | ZeroShotImageClassificationPipelineOptions | The options to use for zero-shot image classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label identified by the model. It is one of the suggested candidate_label. | |
score | number | The score attributed by the model for that label (between 0 and 1). | |
[hypothesis_template] | string | ""This is a photo of {}"" | The sentence used in conjunction with candidate_labelsto attempt the image classification by replacing the placeholder with the candidate_labels. Then likelihood is estimated by using logits_per_image. |
pipelines~ObjectDetectionPipelineType ⇒ Promise. < (ObjectDetectionPipelineOutput|Array < ObjectDetectionPipelineOutput > ) >
Parameters specific to object detection pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(ObjectDetectionPipelineOutput|Array<ObjectDetectionPipelineOutput>)>
- A list of objects or a list of list of objects.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
[options] | ObjectDetectionPipelineOptions | The options to use for object detection. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The class label identified by the model. | |
score | number | The score attributed by the model for that label. | |
box | BoundingBox | The bounding box of detected object in image's original size, or as a percentage if percentage is set to true. | |
[threshold] | number | 0.9 | The threshold used to filter boxes by score. |
[percentage] | boolean | false | Whether to return the boxes coordinates in percentage (true) or in pixels (false). |
pipelines~ZeroShotObjectDetectionPipelineType ⇒ Promise. < (Array < ZeroShotObjectDetectionOutput > |Array < Array < ZeroShotObjectDetectionOutput > > ) >
Parameters specific to zero-shot object detection pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(Array<ZeroShotObjectDetectionOutput>|Array<Array<ZeroShotObjectDetectionOutput>>)>
- An array of objects containing the predicted labels, scores, and bounding boxes.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
candidate_labels | Array. | What the model should recognize in the image. |
[options] | ZeroShotObjectDetectionPipelineOptions | The options to use for zero-shot object detection. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | Text query corresponding to the found object. | |
score | number | Score corresponding to the object (between 0 and 1). | |
box | BoundingBox | Bounding box of the detected object in image's original size, or as a percentage if percentage is set to true. | |
[threshold] | number | 0.1 | The probability necessary to make a prediction. |
[top_k] | number | The number of top predictions that will be returned by the pipeline. If the provided number is null or higher than the number of predictions available, it will default to the number of predictions. | |
[percentage] | boolean | false | Whether to return the boxes coordinates in percentage (true) or in pixels (false). |
pipelines~DocumentQuestionAnsweringPipelineType ⇒ Promise. < (DocumentQuestionAnsweringOutput|Array < DocumentQuestionAnsweringOutput > ) >
Kind: inner typedef of pipelines
Returns: Promise.<(DocumentQuestionAnsweringOutput|Array<DocumentQuestionAnsweringOutput>)>
- An object (or array of objects) containing the answer(s).
Param | Type | Description |
---|---|---|
image | ImageInput | The image of the document to use. |
question | string | A question to ask of the document. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
answer | string | The generated text. |
pipelines~TextToAudioPipelineConstructorArgs : Object
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
[vocoder] | PreTrainedModel | The vocoder used by the pipeline (if the model uses one). If not provided, use the default HifiGan vocoder. |
pipelines~TextToAudioPipelineType ⇒ Promise. < TextToAudioOutput >
Parameters specific to text-to-audio pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<TextToAudioOutput>
- An object containing the generated audio and sampling rate.
Param | Type | Description |
---|---|---|
texts | string | Array | The text(s) to generate. |
options | TextToAudioPipelineOptions | Parameters passed to the model generation/forward method. |
Properties
| Name | Type | Default | Description | | | | ----------------------- | --------------------------------- | -------------------------------------------------- | ----------- | | -------------------------------------------------- | | audio | Float32Array | The generated audio waveform. | | | | | sampling_rate | number | The sampling rate of the generated audio waveform. | | | | | [speaker_embeddings] | Tensor | Float32Array | string | URL | | The speaker embeddings (if the model requires it). |
pipelines~ImageToImagePipelineType ⇒ Promise. < (RawImage|Array < RawImage > ) >
Kind: inner typedef of pipelines
Returns: Promise.<(RawImage|Array<RawImage>)>
- The transformed image or list of images.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The images to transform. |
pipelines~DepthEstimationPipelineType ⇒ Promise. < (DepthEstimationPipelineOutput|Array < DepthEstimationPipelineOutput > ) >
Kind: inner typedef of pipelines
Returns: Promise.<(DepthEstimationPipelineOutput|Array<DepthEstimationPipelineOutput>)>
- An image or a list of images containing result(s).
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The images to compute depth for. |
Properties
Name | Type | Description |
---|---|---|
predicted_depth | Tensor | The raw depth map predicted by the model. |
depth | RawImage | The processed depth map as an image (with the same size as the input image). |
pipelines~AllTasks : *
All possible pipeline types.
Kind: inner typedef of pipelines