Table Transformer (original) (raw)

PyTorch

Overview

The Table Transformer model was proposed in PubTables-1M: Towards comprehensive table extraction from unstructured documents by Brandon Smock, Rohith Pesala, Robin Abraham. The authors introduce a new dataset, PubTables-1M, to benchmark progress in table extraction from unstructured documents, as well as table structure recognition and functional analysis. The authors train 2 DETR models, one for table detection and one for table structure recognition, dubbed Table Transformers.

The abstract from the paper is the following:

Recently, significant progress has been made applying machine learning to the problem of table structure inference and extraction from unstructured documents. However, one of the greatest challenges remains the creation of datasets with complete, unambiguous ground truth at scale. To address this, we develop a new, more comprehensive dataset for table extraction, called PubTables-1M. PubTables-1M contains nearly one million tables from scientific articles, supports multiple input modalities, and contains detailed header and location information for table structures, making it useful for a wide variety of modeling approaches. It also addresses a significant source of ground truth inconsistency observed in prior datasets called oversegmentation, using a novel canonicalization procedure. We demonstrate that these improvements lead to a significant increase in training performance and a more reliable estimate of model performance at evaluation for table structure recognition. Further, we show that transformer-based object detection models trained on PubTables-1M produce excellent results for all three tasks of detection, structure recognition, and functional analysis without the need for any special customization for these tasks.

drawing Table detection and table structure recognition clarified. Taken from the original paper.

The authors released 2 models, one for table detection in documents, one for table structure recognition(the task of recognizing the individual rows, columns etc. in a table).

This model was contributed by nielsr. The original code can be found here.

Resources

TableTransformerConfig

class transformers.TableTransformerConfig

< source >

( use_timm_backbone = True backbone_config = None num_channels = 3 num_queries = 100 encoder_layers = 6 encoder_ffn_dim = 2048 encoder_attention_heads = 8 decoder_layers = 6 decoder_ffn_dim = 2048 decoder_attention_heads = 8 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 is_encoder_decoder = True activation_function = 'relu' d_model = 256 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 init_xavier_std = 1.0 auxiliary_loss = False position_embedding_type = 'sine' backbone = 'resnet50' use_pretrained_backbone = True backbone_kwargs = None dilation = False class_cost = 1 bbox_cost = 5 giou_cost = 2 mask_loss_coefficient = 1 dice_loss_coefficient = 1 bbox_loss_coefficient = 5 giou_loss_coefficient = 2 eos_coefficient = 0.1 **kwargs )

Parameters

This is the configuration class to store the configuration of a TableTransformerModel. It is used to instantiate a Table Transformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Table Transformermicrosoft/table-transformer-detection architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Examples:

from transformers import TableTransformerModel, TableTransformerConfig

configuration = TableTransformerConfig()

model = TableTransformerModel(configuration)

configuration = model.config

TableTransformerModel

class transformers.TableTransformerModel

< source >

( config: TableTransformerConfig )

Parameters

The bare Table Transformer Model (consisting of a backbone and encoder-decoder Transformer) outputting raw hidden-states without any specific head on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< source >

( pixel_values: FloatTensor pixel_mask: typing.Optional[torch.FloatTensor] = None decoder_attention_mask: typing.Optional[torch.FloatTensor] = None encoder_outputs: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.table_transformer.modeling_table_transformer.TableTransformerModelOutput or tuple(torch.FloatTensor)

Parameters

Returns

transformers.models.table_transformer.modeling_table_transformer.TableTransformerModelOutput or tuple(torch.FloatTensor)

A transformers.models.table_transformer.modeling_table_transformer.TableTransformerModelOutput or a tuple oftorch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (TableTransformerConfig) and inputs.

The TableTransformerModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

from transformers import AutoImageProcessor, TableTransformerModel from huggingface_hub import hf_hub_download from PIL import Image

file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png") image = Image.open(file_path).convert("RGB")

image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection") model = TableTransformerModel.from_pretrained("microsoft/table-transformer-detection")

inputs = image_processor(images=image, return_tensors="pt")

outputs = model(**inputs)

last_hidden_states = outputs.last_hidden_state list(last_hidden_states.shape) [1, 15, 256]

TableTransformerForObjectDetection

class transformers.TableTransformerForObjectDetection

< source >

( config: TableTransformerConfig )

Parameters

Table Transformer Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top, for tasks such as COCO detection.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< source >

( pixel_values: FloatTensor pixel_mask: typing.Optional[torch.FloatTensor] = None decoder_attention_mask: typing.Optional[torch.FloatTensor] = None encoder_outputs: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[typing.List[typing.Dict]] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.table_transformer.modeling_table_transformer.TableTransformerObjectDetectionOutput or tuple(torch.FloatTensor)

Parameters

Returns

transformers.models.table_transformer.modeling_table_transformer.TableTransformerObjectDetectionOutput or tuple(torch.FloatTensor)

A transformers.models.table_transformer.modeling_table_transformer.TableTransformerObjectDetectionOutput or a tuple oftorch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (TableTransformerConfig) and inputs.

The TableTransformerForObjectDetection forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

from huggingface_hub import hf_hub_download from transformers import AutoImageProcessor, TableTransformerForObjectDetection import torch from PIL import Image

file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png") image = Image.open(file_path).convert("RGB")

image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection") model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection")

inputs = image_processor(images=image, return_tensors="pt") outputs = model(**inputs)

target_sizes = torch.tensor([image.size[::-1]]) results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[ ... 0 ... ]

for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): ... box = [round(i, 2) for i in box.tolist()] ... print( ... f"Detected {model.config.id2label[label.item()]} with confidence " ... f"{round(score.item(), 3)} at location {box}" ... ) Detected table with confidence 1.0 at location [202.1, 210.59, 1119.22, 385.09]

< > Update on GitHub