Jeetendra Nag | The Hebrew University of Jerusalem (original) (raw)

Papers by Jeetendra Nag

Research paper thumbnail of G-protein coupled receptor PAR1 is overexpressed in glioma progenitor cells

Translational Cancer Research, 2016

It is widely accepted that progenitor stem cells are the origin and initiators of different types... more It is widely accepted that progenitor stem cells are the origin and initiators of different types of cancer that exhibit self-renewal, multipotency, and aggressive properties (1,2). This concept represents a different approach compared with previous theories, and the idea that cancer may be primarily driven by a small population of stem cells has important implications. For example, shrinking a tumor without killing the cancer stem cells may not be sufficient, since the remaining tumor cells are capable of re-growing, often with modified properties and resistance to previously used therapies. Furthermore, for the purpose of personalized therapy it is important to identify molecular traits that are specific to cancer stem cells, in comparison with normal stem cells, and this is a timely and achievable task.

Research paper thumbnail of Homology modeling of NAD+-dependent DNA ligase of Brugia malayi Wolbachia and its drug target potential using dispiro-cycloalkanones

Antimicrobial agents and chemotherapy, Jan 6, 2015

Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia.... more Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility and viability and thus has great promise as a novel approach for treating filarial diseases. NAD(+)-dependent DNA ligase is an essential enzyme of DNA replication, repair and recombination. Therefore, in the current study, the antifilarial drug target potential of NAD(+) dependent DNA ligase of Wolbachia (wBm-LigA) was investigated by using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick closing and cohesive end ligation activity of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD(+) cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro an...

Research paper thumbnail of Tetracycline treatment targeting Wolbachia affects expression of an array of proteins in Brugia malayi parasite

Wolbachia is an intracellular endosymbiont of Brugia malayi parasite whose presence is essential ... more Wolbachia is an intracellular endosymbiont of Brugia malayi parasite whose presence is essential for the survival of the parasite. Treatment of B. malayi-infected jirds with tetracycline eliminates Wolbachia, which affects parasite survival and fitness. In the present study we have tried to identify parasite proteins that are affected when Wolbachia is targeted by tetracycline. For this Wolbachia depleted parasites (B. malayi) were obtained by tetracycline treatment of infected Mongolian jirds (Meriones unguiculatus) and their protein profile after 2-DE separation was compared with that of untreated parasites harboring Wolbachia. Approximately 100 protein spots could be visualized followed by CBB staining of 2-D gel and included for comparative analysis. Of these, 54 showed differential expressions, while two new protein spots emerged (of 90.3 and 64.4 kDa). These proteins were subjected to further analysis by MALDI-TOF for their identification using Brugia coding sequence database composed of both genomic and EST sequences. Our study unravels two crucial findings: (i) the parasite or Wolbachia proteins, which disappeared/down-regulated appear be essential for parasite survival and may be used as drug targets and (ii) tetracycline treatment interferes with the regulatory machinery vital for parasites cellular integrity and defense and thus could possibly be a molecular mechanism for the killing of filarial parasite. This is the first proteomic study substantiating the wolbachial genome integrity with its nematode host and providing functional genomic data of human lymphatic filarial parasite B. malayi.

Research paper thumbnail of Wolbachia Transcription Elongation Factor “Wol GreA” Interacts with α2ββ′σ Subunits of RNA Polymerase through Its Dimeric C-Terminal Domain

PLoS Neglected Tropical Diseases, 2014

Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for therapy aga... more Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for therapy against lymphatic filariasis. Transcription elongation factor GreA is an essential factor that mediates transcriptional transition from abortive initiation to productive elongation by stimulating the escape of RNA polymerase (RNAP) from native prokaryotic promoters. Upon screening of 6257 essential bacterial genes, 57 were suggested as potential future drug targets, and GreA is among these. The current study emphasized the characterization of Wol GreA with its domains. Biophysical characterization of Wol GreA with its N-terminal domain (NTD) and C-terminal domain (CTD) was performed with fluorimetry, size exclusion chromatography, and chemical cross-linking. Filter trap and far western blotting were used to determine the domain responsible for the interaction with α2ββ'σ subunits of RNAP. Protein-protein docking studies were done to explore residual interaction of RNAP with Wol GreA. The factor and its domains were found to be biochemically active. Size exclusion and chemical cross-linking studies revealed that Wol GreA and CTD exist in a dimeric conformation while NTD subsists in monomeric conformation. Asp120, Val121, Ser122, Lys123, and Ser134 are the residues of CTD through which monomers of Wol GreA interact and shape into a dimeric conformation. Filter trap, far western blotting, and protein-protein docking studies revealed that dimeric CTD of Wol GreA through Lys82, Ser98, Asp104, Ser105, Glu106, Tyr109, Glu116, Asp120, Val121, Ser122, Ser127, Ser129, Lys140, Glu143, Val147, Ser151, Glu153, and Phe163 residues exclusively participates in binding with α2ββ'σ subunits of polymerase. To the best of our knowledge, this research is the first documentation of the residual mode of action in wolbachial mutualist. Therefore, findings may be crucial to understanding the transcription mechanism of this α-proteobacteria and in deciphering the role of Wol GreA in filarial development.

Research paper thumbnail of Molecular Characterization of NAD+-Dependent DNA Ligase from Wolbachia Endosymbiont of Lymphatic Filarial Parasite Brugia malayi

PLoS ONE, 2012

The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential... more The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD + -dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA replication, recombination and DNA repair. We report here the cloning, expression and purification of NAD + -dependent DNA ligase of Wolbachia endosymbiont of B. malayi (wBm-LigA) for its molecular characterization. wBm-LigA has all the domains that are present in nearly all the eubacterial NAD + -dependent DNA ligases such as N-terminal adenylation domain, OB fold, helix-hairpin-helix (HhH) and BRCT domain except zinc-binding tetracysteine domain. The purified recombinant protein (683-amino acid) was found to be biochemically active and was present in its native form as revealed by the circular dichroism and fluorescence spectra. The purified recombinant enzyme was able to catalyze intramolecular strand joining on a nicked DNA as well as intermolecular joining of the cohesive ends of BstEII restricted lamda DNA in an in vitro assay. The enzyme was localized in the various life-stages of B. malayi parasites by immunoblotting and high enzyme expression was observed in Wolbachia within B. malayi microfilariae and female adult parasites along the hypodermal chords and in the gravid portion as evident by the confocal microscopy. Ours is the first report on this enzyme of Wolbachia and these findings would assist in validating the antifilarial drug target potential of wBm-LigA in future studies.

Research paper thumbnail of Immunization with a multisubunit vaccine considerably reduces establishment of infective larvae in a rodent model of Brugia malayi

Comparative Immunology, Microbiology and Infectious Diseases, 2013

Although recombinant vaccines have several advantages over conventional vaccines, protection indu... more Although recombinant vaccines have several advantages over conventional vaccines, protection induced by single antigen vaccines is often inadequate for a multicellular helminth parasite. Therefore, immunoprophylactic efficacy of cocktail antigen vaccines comprised of several combinations of three Brugia malayi recombinant proteins BmAF-Myo, Bm-iPGM and Bm-TPP were evaluated. Myosin+TPP and iPGM+TPP provided the best protection upon B. malayi infective larval challenge with ∼70% reduction in adult worm establishment over non-vaccinated animals that was significantly higher than the protection achieved by any single antigen vaccine. Myosin+iPGM, in contrast did not provide any enhance protection over the single recombinant protein vaccines. Specific IgG, IgM level, IgG antibody subclasses levels (IgG1, IgG2a, IgG2b, IgG3), lymphocyte proliferation, reactive oxygen species level and cytokines level were also determined to elucidate the characteristics of the protective immune responses. Thus the study undertaken provided more insight into the cocktail vaccination approach to combat LF.

Research paper thumbnail of Recombinant translation initiation factor-1 of Wolbachia is an immunogenic excretory secretory protein that elicits Th2 mediated immune protection against Brugia malayi

Comparative Immunology, Microbiology and Infectious Diseases, 2013

Wolbachia, the intracellular alpha-proteobacteria are required for the development, fertility and... more Wolbachia, the intracellular alpha-proteobacteria are required for the development, fertility and survival of filarial parasites. Wolbachia Translation initiation factor-1 (Wol Tl IF-1) is one of the factors required for Wolbachia growth and viability. In the present study, we cloned, over expressed and purified Wol Tl IF-1 that exhibited strong immuno-reactivity with various categories of bancroftian sera. Immunization with the recombinant protein resulted into significant reduction in microfilarial density (70-72%) and adult worm establishment (61-63%) in susceptible Mastomys coucha. Protection offered by Wol Tl IF-1 was found associated with humoral immune arm as observed by an increased antibody level with preponderance of IgE, IgM, IgG1 and IgG2a isotypes. The anti-Wol Tl IF-1 antibodies promoted profound adherence of peritoneal exudates cells to the surface of microfilariae and infective larvae causing cytotoxicity and their death. The present study indicates potential of recombinant Wol Tl IF-1 as a promising vaccine candidate against human lymphatic filarial infection.

Research paper thumbnail of Wolbachia translation initiation factor-1 is copiously expressed by the adult, microfilariae and infective larvae of Brugia malayi and competitively inhibited by tetracycline

Acta Tropica, 2014

The intracellular alphaproteobacteria, Wolbachia, is considered to be a future antimacrofilarial ... more The intracellular alphaproteobacteria, Wolbachia, is considered to be a future antimacrofilarial drug target as it is obligatory for filarial endurance. Characterizing wolbachial proteins is necessary to understand wolbachial mechanisms and also for discovering new drug entities. Translation initiation factor-1 (Tl IF-1) is an indispensable prokaryotic factor concerned with bacterial viability. This factor is prioritized as one of the most potent antibacterial drug target. To investigate its role in filarial biology, recombinant Wol Tl IF-1 was purified on metal ion column. The factor was found folded in its monomeric native conformation, and contained a buried fluorophore. Molecular modeling revealed that the factor belonged to the Oligomer Binding family, and consisted of the highly conserved S1 domain with 81.6% of the amino acids occupying the allowed regions in Ramachandran plot. In addition, Wol Tl IF-1 exhibited selective binding to the 30S ribosomal subunit, which declined progressively with tetracycline addition. Tetracycline perturbs interaction of Thr18 and Asn32 of the factor with ribosomal protein S4. The factor was immune-localized in adult, microfilariae (Mf) and infective larvae (L3) of Brugia malayi by immunoblotting. High expression was also observed in Wolbachia within B. malayi Mf, L3 and female adult parasite along the gravid uteri by the confocal microscopy. Therefore, Wol Tl IF-1 appears to be an essential Wolbachia factor whose inhibition leads to extensive cell apoptosis and premature killing of adult worms, validating the antifilarial potential of the factor.

Research paper thumbnail of G-protein coupled receptor PAR1 is overexpressed in glioma progenitor cells

Translational Cancer Research, 2016

It is widely accepted that progenitor stem cells are the origin and initiators of different types... more It is widely accepted that progenitor stem cells are the origin and initiators of different types of cancer that exhibit self-renewal, multipotency, and aggressive properties (1,2). This concept represents a different approach compared with previous theories, and the idea that cancer may be primarily driven by a small population of stem cells has important implications. For example, shrinking a tumor without killing the cancer stem cells may not be sufficient, since the remaining tumor cells are capable of re-growing, often with modified properties and resistance to previously used therapies. Furthermore, for the purpose of personalized therapy it is important to identify molecular traits that are specific to cancer stem cells, in comparison with normal stem cells, and this is a timely and achievable task.

Research paper thumbnail of Homology modeling of NAD+-dependent DNA ligase of Brugia malayi Wolbachia and its drug target potential using dispiro-cycloalkanones

Antimicrobial agents and chemotherapy, Jan 6, 2015

Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia.... more Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility and viability and thus has great promise as a novel approach for treating filarial diseases. NAD(+)-dependent DNA ligase is an essential enzyme of DNA replication, repair and recombination. Therefore, in the current study, the antifilarial drug target potential of NAD(+) dependent DNA ligase of Wolbachia (wBm-LigA) was investigated by using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick closing and cohesive end ligation activity of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD(+) cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro an...

Research paper thumbnail of Tetracycline treatment targeting Wolbachia affects expression of an array of proteins in Brugia malayi parasite

Wolbachia is an intracellular endosymbiont of Brugia malayi parasite whose presence is essential ... more Wolbachia is an intracellular endosymbiont of Brugia malayi parasite whose presence is essential for the survival of the parasite. Treatment of B. malayi-infected jirds with tetracycline eliminates Wolbachia, which affects parasite survival and fitness. In the present study we have tried to identify parasite proteins that are affected when Wolbachia is targeted by tetracycline. For this Wolbachia depleted parasites (B. malayi) were obtained by tetracycline treatment of infected Mongolian jirds (Meriones unguiculatus) and their protein profile after 2-DE separation was compared with that of untreated parasites harboring Wolbachia. Approximately 100 protein spots could be visualized followed by CBB staining of 2-D gel and included for comparative analysis. Of these, 54 showed differential expressions, while two new protein spots emerged (of 90.3 and 64.4 kDa). These proteins were subjected to further analysis by MALDI-TOF for their identification using Brugia coding sequence database composed of both genomic and EST sequences. Our study unravels two crucial findings: (i) the parasite or Wolbachia proteins, which disappeared/down-regulated appear be essential for parasite survival and may be used as drug targets and (ii) tetracycline treatment interferes with the regulatory machinery vital for parasites cellular integrity and defense and thus could possibly be a molecular mechanism for the killing of filarial parasite. This is the first proteomic study substantiating the wolbachial genome integrity with its nematode host and providing functional genomic data of human lymphatic filarial parasite B. malayi.

Research paper thumbnail of Wolbachia Transcription Elongation Factor “Wol GreA” Interacts with α2ββ′σ Subunits of RNA Polymerase through Its Dimeric C-Terminal Domain

PLoS Neglected Tropical Diseases, 2014

Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for therapy aga... more Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for therapy against lymphatic filariasis. Transcription elongation factor GreA is an essential factor that mediates transcriptional transition from abortive initiation to productive elongation by stimulating the escape of RNA polymerase (RNAP) from native prokaryotic promoters. Upon screening of 6257 essential bacterial genes, 57 were suggested as potential future drug targets, and GreA is among these. The current study emphasized the characterization of Wol GreA with its domains. Biophysical characterization of Wol GreA with its N-terminal domain (NTD) and C-terminal domain (CTD) was performed with fluorimetry, size exclusion chromatography, and chemical cross-linking. Filter trap and far western blotting were used to determine the domain responsible for the interaction with α2ββ'σ subunits of RNAP. Protein-protein docking studies were done to explore residual interaction of RNAP with Wol GreA. The factor and its domains were found to be biochemically active. Size exclusion and chemical cross-linking studies revealed that Wol GreA and CTD exist in a dimeric conformation while NTD subsists in monomeric conformation. Asp120, Val121, Ser122, Lys123, and Ser134 are the residues of CTD through which monomers of Wol GreA interact and shape into a dimeric conformation. Filter trap, far western blotting, and protein-protein docking studies revealed that dimeric CTD of Wol GreA through Lys82, Ser98, Asp104, Ser105, Glu106, Tyr109, Glu116, Asp120, Val121, Ser122, Ser127, Ser129, Lys140, Glu143, Val147, Ser151, Glu153, and Phe163 residues exclusively participates in binding with α2ββ'σ subunits of polymerase. To the best of our knowledge, this research is the first documentation of the residual mode of action in wolbachial mutualist. Therefore, findings may be crucial to understanding the transcription mechanism of this α-proteobacteria and in deciphering the role of Wol GreA in filarial development.

Research paper thumbnail of Molecular Characterization of NAD+-Dependent DNA Ligase from Wolbachia Endosymbiont of Lymphatic Filarial Parasite Brugia malayi

PLoS ONE, 2012

The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential... more The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD + -dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA replication, recombination and DNA repair. We report here the cloning, expression and purification of NAD + -dependent DNA ligase of Wolbachia endosymbiont of B. malayi (wBm-LigA) for its molecular characterization. wBm-LigA has all the domains that are present in nearly all the eubacterial NAD + -dependent DNA ligases such as N-terminal adenylation domain, OB fold, helix-hairpin-helix (HhH) and BRCT domain except zinc-binding tetracysteine domain. The purified recombinant protein (683-amino acid) was found to be biochemically active and was present in its native form as revealed by the circular dichroism and fluorescence spectra. The purified recombinant enzyme was able to catalyze intramolecular strand joining on a nicked DNA as well as intermolecular joining of the cohesive ends of BstEII restricted lamda DNA in an in vitro assay. The enzyme was localized in the various life-stages of B. malayi parasites by immunoblotting and high enzyme expression was observed in Wolbachia within B. malayi microfilariae and female adult parasites along the hypodermal chords and in the gravid portion as evident by the confocal microscopy. Ours is the first report on this enzyme of Wolbachia and these findings would assist in validating the antifilarial drug target potential of wBm-LigA in future studies.

Research paper thumbnail of Immunization with a multisubunit vaccine considerably reduces establishment of infective larvae in a rodent model of Brugia malayi

Comparative Immunology, Microbiology and Infectious Diseases, 2013

Although recombinant vaccines have several advantages over conventional vaccines, protection indu... more Although recombinant vaccines have several advantages over conventional vaccines, protection induced by single antigen vaccines is often inadequate for a multicellular helminth parasite. Therefore, immunoprophylactic efficacy of cocktail antigen vaccines comprised of several combinations of three Brugia malayi recombinant proteins BmAF-Myo, Bm-iPGM and Bm-TPP were evaluated. Myosin+TPP and iPGM+TPP provided the best protection upon B. malayi infective larval challenge with ∼70% reduction in adult worm establishment over non-vaccinated animals that was significantly higher than the protection achieved by any single antigen vaccine. Myosin+iPGM, in contrast did not provide any enhance protection over the single recombinant protein vaccines. Specific IgG, IgM level, IgG antibody subclasses levels (IgG1, IgG2a, IgG2b, IgG3), lymphocyte proliferation, reactive oxygen species level and cytokines level were also determined to elucidate the characteristics of the protective immune responses. Thus the study undertaken provided more insight into the cocktail vaccination approach to combat LF.

Research paper thumbnail of Recombinant translation initiation factor-1 of Wolbachia is an immunogenic excretory secretory protein that elicits Th2 mediated immune protection against Brugia malayi

Comparative Immunology, Microbiology and Infectious Diseases, 2013

Wolbachia, the intracellular alpha-proteobacteria are required for the development, fertility and... more Wolbachia, the intracellular alpha-proteobacteria are required for the development, fertility and survival of filarial parasites. Wolbachia Translation initiation factor-1 (Wol Tl IF-1) is one of the factors required for Wolbachia growth and viability. In the present study, we cloned, over expressed and purified Wol Tl IF-1 that exhibited strong immuno-reactivity with various categories of bancroftian sera. Immunization with the recombinant protein resulted into significant reduction in microfilarial density (70-72%) and adult worm establishment (61-63%) in susceptible Mastomys coucha. Protection offered by Wol Tl IF-1 was found associated with humoral immune arm as observed by an increased antibody level with preponderance of IgE, IgM, IgG1 and IgG2a isotypes. The anti-Wol Tl IF-1 antibodies promoted profound adherence of peritoneal exudates cells to the surface of microfilariae and infective larvae causing cytotoxicity and their death. The present study indicates potential of recombinant Wol Tl IF-1 as a promising vaccine candidate against human lymphatic filarial infection.

Research paper thumbnail of Wolbachia translation initiation factor-1 is copiously expressed by the adult, microfilariae and infective larvae of Brugia malayi and competitively inhibited by tetracycline

Acta Tropica, 2014

The intracellular alphaproteobacteria, Wolbachia, is considered to be a future antimacrofilarial ... more The intracellular alphaproteobacteria, Wolbachia, is considered to be a future antimacrofilarial drug target as it is obligatory for filarial endurance. Characterizing wolbachial proteins is necessary to understand wolbachial mechanisms and also for discovering new drug entities. Translation initiation factor-1 (Tl IF-1) is an indispensable prokaryotic factor concerned with bacterial viability. This factor is prioritized as one of the most potent antibacterial drug target. To investigate its role in filarial biology, recombinant Wol Tl IF-1 was purified on metal ion column. The factor was found folded in its monomeric native conformation, and contained a buried fluorophore. Molecular modeling revealed that the factor belonged to the Oligomer Binding family, and consisted of the highly conserved S1 domain with 81.6% of the amino acids occupying the allowed regions in Ramachandran plot. In addition, Wol Tl IF-1 exhibited selective binding to the 30S ribosomal subunit, which declined progressively with tetracycline addition. Tetracycline perturbs interaction of Thr18 and Asn32 of the factor with ribosomal protein S4. The factor was immune-localized in adult, microfilariae (Mf) and infective larvae (L3) of Brugia malayi by immunoblotting. High expression was also observed in Wolbachia within B. malayi Mf, L3 and female adult parasite along the gravid uteri by the confocal microscopy. Therefore, Wol Tl IF-1 appears to be an essential Wolbachia factor whose inhibition leads to extensive cell apoptosis and premature killing of adult worms, validating the antifilarial potential of the factor.