Mohammad Jafari | Iowa State University (original) (raw)
Papers by Mohammad Jafari
Bladeless fan is a novel type of fan with an unusual geometry and unique characteristics. This ty... more Bladeless fan is a novel type of fan with an unusual geometry and unique characteristics. This type of fan has been recently developed for domestic applications in sizes typically up to 30cm diameter. In the present study, a Bladeless fan with a diameter of 60cm was designed and constructed, in order to investigate feasibility of its usage in various industries with large dimensions. Firstly, flow field passed through this fan was studied by 3D modeling. Aerodynamic and aeroacoustic performance of the fan were considered via solving the conservation of mass and momentum equations in their unsteady form. To validate the acoustic code, NACA 0012 airfoil was simulated in a two dimension domain and the emitted noise was calculated for Re=2×10 5. Good agreement between numerical and experimental results was observed by applying FW-H equations for predicting noise of the fan. To validate the simulated aerodynamic results, a Bladeless fan with a 60cm diameter was constructed and experimentally tested. In addition, the difference between the experimental and numerical results was acceptable for this fan. Moreover, the experimental results in the present study showed that this fan is capable to be designed and used for various industrial applications.
Bladeless fan is a novel fan type that has no observable impeller, usually used for domestic appl... more Bladeless fan is a novel fan type that has no observable impeller, usually used for domestic applications. Numerical investigation of a Bladeless fan via Finite Volume Method was carried out in this study. The fan was placed in center of a 4×2×2m room and 473 Eppler airfoil profile was used as cross section of the fan. Performance and noise level of the fan by solving continuity and momentum equations as well as noise equations of Broadband Noise Source (BNS) and Ffowcs Williams and Hawkings (FW-H) in both steady state and unsteady conditions were studied. Flow increase ratio of the fan was captured. Furthermore, BNS method could find outlet slit of the air as the main source of the noise generation. In order to validation of aeroacousticcode results, a simulation of noise for NACA 0012 airfoil via FW-H method was compared to experimental results and good agreement was obtained.
Aerodynamic performance of a Bladeless fan is numerically investigated considering the effect of ... more Aerodynamic performance of a Bladeless fan is numerically investigated considering the effect of five geometric parameters. Airflow through this fan was analyzed by simulating a Bladeless fan within a 2 m  2 m  4 m room. Analysis of the flow field inside the fan and the evaluation of its performance were obtained by solving conservations of mass and momentum equations for the aerodynamic investigations. In order to design the Bladeless fan an Eppler 473 airfoil profile was used as the cross section of the fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter, and aspect ratio for circular and quadratic cross sections were considered. Validating 3-D numerical results, experimental results of a round jet showed good agreement with those of the simulation data. The multiplier factor M is defined to show the ratio of the outlet flow rate to inlet flow rate from the fan. The obtained numerical results showed that the Discharge ratio has the maximum value for the height of 3 cm. The numerical outcomes of outlet thickness variation indicate that this parameter is one of the most influential parameters on the aerodynamic performance of a Bladeless fan. The results for the outlet thicknesses of 1, 2 and 3 mm showed that the Discharge ratio increased significantly when the outlet thickness decreased.
Nowadays, researchers are interested in investigation of the ocean wave energy conversion (OWEC) ... more Nowadays, researchers are interested in investigation of the ocean wave energy conversion (OWEC) because this device can convert wave energy into electricity economically. The aim of this study was to evaluate a novel ocean wave energy converter named Searaser which may be capable of being used in the Caspian Sea. One of the ways for improving the efficiency of Searasers is to use numerous Searasers simultaneously. Increasing the number of Searasers not only increases the electricity production but also can help producing more stable electricity. In this article the function of two Searasers three different distances (10, 15 and 20 m) was evaluated numerically by solving momentum and continuity equations in unsteady condition by FLOW-3D software. The effect of different wave heights of Caspian Sea was also investigated in this research. To evaluate the numerical results of this research, they were also compared with experimental results of modeling a buoy and showed good agreement. For the three mentioned distances of buoys, the outlet flow rate and the buoys movement were measured. The results showed that when the buoys were 15 m far from each other, the hydrodynamic performance was better and the outlet flow rate and electricity generation showed less fluctuation.
Bladeless fan is a novel type of fan with an unusual geometry and unique characteristics. This ty... more Bladeless fan is a novel type of fan with an unusual geometry and unique characteristics. This type of fan has been recently developed for domestic applications in sizes typically up to 30cm diameter. In the present study, a Bladeless fan with a diameter of 60cm was designed and constructed, in order to investigate feasibility of its usage in various industries with large dimensions. Firstly, flow field passed through this fan was studied by 3D modeling. Aerodynamic and aeroacoustic performance of the fan were considered via solving the conservation of mass and momentum equations in their unsteady form. To validate the acoustic code, NACA 0012 airfoil was simulated in a two dimension domain and the emitted noise was calculated for Re=2×10 5. Good agreement between numerical and experimental results was observed by applying FW-H equations for predicting noise of the fan. To validate the simulated aerodynamic results, a Bladeless fan with a 60cm diameter was constructed and experimentally tested. In addition, the difference between the experimental and numerical results was acceptable for this fan. Moreover, the experimental results in the present study showed that this fan is capable to be designed and used for various industrial applications.
Bladeless fan is a novel fan type that has no observable impeller, usually used for domestic appl... more Bladeless fan is a novel fan type that has no observable impeller, usually used for domestic applications. Numerical investigation of a Bladeless fan via Finite Volume Method was carried out in this study. The fan was placed in center of a 4×2×2m room and 473 Eppler airfoil profile was used as cross section of the fan. Performance and noise level of the fan by solving continuity and momentum equations as well as noise equations of Broadband Noise Source (BNS) and Ffowcs Williams and Hawkings (FW-H) in both steady state and unsteady conditions were studied. Flow increase ratio of the fan was captured. Furthermore, BNS method could find outlet slit of the air as the main source of the noise generation. In order to validation of aeroacousticcode results, a simulation of noise for NACA 0012 airfoil via FW-H method was compared to experimental results and good agreement was obtained.
Aerodynamic performance of a Bladeless fan is numerically investigated considering the effect of ... more Aerodynamic performance of a Bladeless fan is numerically investigated considering the effect of five geometric parameters. Airflow through this fan was analyzed by simulating a Bladeless fan within a 2 m  2 m  4 m room. Analysis of the flow field inside the fan and the evaluation of its performance were obtained by solving conservations of mass and momentum equations for the aerodynamic investigations. In order to design the Bladeless fan an Eppler 473 airfoil profile was used as the cross section of the fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter, and aspect ratio for circular and quadratic cross sections were considered. Validating 3-D numerical results, experimental results of a round jet showed good agreement with those of the simulation data. The multiplier factor M is defined to show the ratio of the outlet flow rate to inlet flow rate from the fan. The obtained numerical results showed that the Discharge ratio has the maximum value for the height of 3 cm. The numerical outcomes of outlet thickness variation indicate that this parameter is one of the most influential parameters on the aerodynamic performance of a Bladeless fan. The results for the outlet thicknesses of 1, 2 and 3 mm showed that the Discharge ratio increased significantly when the outlet thickness decreased.
Nowadays, researchers are interested in investigation of the ocean wave energy conversion (OWEC) ... more Nowadays, researchers are interested in investigation of the ocean wave energy conversion (OWEC) because this device can convert wave energy into electricity economically. The aim of this study was to evaluate a novel ocean wave energy converter named Searaser which may be capable of being used in the Caspian Sea. One of the ways for improving the efficiency of Searasers is to use numerous Searasers simultaneously. Increasing the number of Searasers not only increases the electricity production but also can help producing more stable electricity. In this article the function of two Searasers three different distances (10, 15 and 20 m) was evaluated numerically by solving momentum and continuity equations in unsteady condition by FLOW-3D software. The effect of different wave heights of Caspian Sea was also investigated in this research. To evaluate the numerical results of this research, they were also compared with experimental results of modeling a buoy and showed good agreement. For the three mentioned distances of buoys, the outlet flow rate and the buoys movement were measured. The results showed that when the buoys were 15 m far from each other, the hydrodynamic performance was better and the outlet flow rate and electricity generation showed less fluctuation.