Romulo Poderoso Rauta | Instituto Federal de Educação, Ciência e Tecnologia do Maranhão (IFMA) (original) (raw)
Address: São Luís, Maranhao, Brazil
less
Related Authors
University of Belgrade, Faculty of Mechanical Engineering
University of Belgrade, Faculty of Mechanical Engineering
Uploads
Papers by Romulo Poderoso Rauta
Materials Research, 2016
The aim of this work is evaluate the influence of welding conditions on abrasive wear resistance ... more The aim of this work is evaluate the influence of welding conditions on abrasive wear resistance in coating of Fe-Cr-C. The metal base used in this investigation was the steel SAE 1020 and as welded metal the selfshilded tubular wires of Fe-Cr-C with 1.6 mm of diameter. The welding parameter such as amperage, voltage, welding speed, wire feed speed and the distance between the point and samples were kept constant by varying the electrode inclination and the number of layers deposited. These resulted in four different weld conditions: pulling and pushing the weld pool and hardfacing formed with 1 end 2 layers. Their influences on dilution, microhardness and microstructure were evaluated and correlated with the abrasive wear according to the standard tests methods for abrasion measurements through the usage of dry sand/rubber wheel apparatus, ASTM G-65-04. The results showed that the wear resistance of the four different conditions was affected by dilution, microstructure morphology and carbide volume fraction. The best conditions for hardfacing deposition were for pushing the torch and two layers added.
Materials Research, 2016
The aim of this work is evaluate the influence of welding conditions on abrasive wear resistance ... more The aim of this work is evaluate the influence of welding conditions on abrasive wear resistance in coating of Fe-Cr-C. The metal base used in this investigation was the steel SAE 1020 and as welded metal the selfshilded tubular wires of Fe-Cr-C with 1.6 mm of diameter. The welding parameter such as amperage, voltage, welding speed, wire feed speed and the distance between the point and samples were kept constant by varying the electrode inclination and the number of layers deposited. These resulted in four different weld conditions: pulling and pushing the weld pool and hardfacing formed with 1 end 2 layers. Their influences on dilution, microhardness and microstructure were evaluated and correlated with the abrasive wear according to the standard tests methods for abrasion measurements through the usage of dry sand/rubber wheel apparatus, ASTM G-65-04. The results showed that the wear resistance of the four different conditions was affected by dilution, microstructure morphology and carbide volume fraction. The best conditions for hardfacing deposition were for pushing the torch and two layers added.