Andrew Hua | University of Illinois at Urbana-Champaign (original) (raw)

Papers by Andrew Hua

Research paper thumbnail of Evaluation of Machine Learning Models for Classifying Upper Extremity Exercises Using Inertial Measurement Unit-Based Kinematic Data

IEEE Journal of Biomedical and Health Informatics, 2020

The amount of home-based exercise prescribed by a physical therapist is difficult to monitor. How... more The amount of home-based exercise prescribed by a physical therapist is difficult to monitor. However, the integration of wearable inertial measurement unit (IMU) devices can aid in monitoring home exercise by analyzing exercise biomechanics. The objective of this study is to evaluate machine learning models for classifying nine different upper extremity exercises, based upon kinematic data captured from an IMU-based device. Fifty participants performed one compound and eight isolation exercises with their right arm. Each exercise was performed ten times for a total of 4500 trials. Joint angles were calculated using IMUs that were placed on the hand, forearm, upper arm, and torso. Various machine learning models were developed with different algorithms and train-test splits. Random forest models with flattened kinematic data as a feature had the greatest accuracy (98.6%). Using triaxial joint range of motion as the feature set resulted in decreased accuracy (91.9%) with faster speed...

Research paper thumbnail of Design of a Low-Cost, Wearable Device for Kinematic Analysis in Physical Therapy Settings

Methods of Information in Medicine

Unsupervised home exercise is a major component of physical therapy (PT). This study proposes an ... more Unsupervised home exercise is a major component of physical therapy (PT). This study proposes an inexpensive, inertial measurement unit-based wearable device to capture kinematic data to facilitate exercise. However, conveying and interpreting kinematic data to non-experts poses a challenge due to the complexity and background knowledge required that most patients lack. Objectives The objectives of this study were to identify key user interface and user experience features that would likely improve device adoption and assess participant receptiveness toward the device. Methods Fifty participants were recruited to perform nine upper extremity exercises while wearing the device. Prior to exercise, participants completed an orientation of the device, which included examples of software graphics with exercise data. Surveys that measured receptiveness toward the device, software graphics, and ergonomics were given before and after exercise. Results Participants were highly receptive to t...

Research paper thumbnail of Classifying Upper Extremity Exercises Using Biomechanics Captured with an Inertial Measurement Unit-based Device

Medicine & Science in Sports & Exercise

Research paper thumbnail of Accelerometer-based predictive models of fall risk in older women: a pilot study

npj Digital Medicine, Jul 11, 2018

Current clinical methods of screening older adults for fall risk have difficulties. We analyzed d... more Current clinical methods of screening older adults for fall risk have difficulties. We analyzed data on 67 women (mean age = 77.5 years) who participated in the Objective Physical Activity and Cardiovascular Health (OPACH) study within the Women's Health Initiative and in an accelerometer calibration substudy. Participants completed the short physical performance battery (SPPB), questions about falls in the past year, and a timed 400-m walk while wearing a hip triaxial accelerometer (30 Hz). Women with SPPB ≤ 9 and 1+reported falls (n = 19) were grouped as high fall risk; women with SPPB = 10-12 and 0 reported falls (n = 48) were grouped as low fall risk. Random Forests were trained to classify women into these groups, based upon traditional measures of gait and/or signal-based features extracted from accelerometer data. Eleven models investigated combined feature effects on classification accuracy, using 10-fold cross-validation. The models had an average 73.7% accuracy, 81.1% precision, and 0.706 AUC. The best performing model including triaxial data, cross-correlations, and traditional measures of gait had 78.9% accuracy, 84.4% precision, and 0.846 AUC. Mediolateral signal-based measures-coefficient of variance, cross-correlation with anteroposterior accelerations, and mean acceleration-ranked as the top 3 features. The classification accuracy is promising, given research on probabilistic models of falls indicates accuracies ≥80% are challenging to achieve. The results suggest accelerometer-based measures captured during walking are potentially useful in screening older women for fall risk. We are applying algorithms developed in this paper on an OPACH dataset of 5000 women with a 1-year prospective falls log and week-long, free-living accelerometer data.

Research paper thumbnail of Accelerometer-based predictive models of fall risk in older women: a pilot study

npj Digital Medicine, Jul 11, 2018

Current clinical methods of screening older adults for fall risk have difficulties. We analyzed d... more Current clinical methods of screening older adults for fall risk have difficulties. We analyzed data on 67 women (mean age = 77.5 years) who participated in the Objective Physical Activity and Cardiovascular Health (OPACH) study within the Women's Health Initiative and in an accelerometer calibration substudy. Participants completed the short physical performance battery (SPPB), questions about falls in the past year, and a timed 400-m walk while wearing a hip triaxial accelerometer (30 Hz). Women with SPPB ≤ 9 and 1+reported falls (n = 19) were grouped as high fall risk; women with SPPB = 10-12 and 0 reported falls (n = 48) were grouped as low fall risk. Random Forests were trained to classify women into these groups, based upon traditional measures of gait and/or signal-based features extracted from accelerometer data. Eleven models investigated combined feature effects on classification accuracy, using 10-fold cross-validation. The models had an average 73.7% accuracy, 81.1% precision, and 0.706 AUC. The best performing model including triaxial data, cross-correlations, and traditional measures of gait had 78.9% accuracy, 84.4% precision, and 0.846 AUC. Mediolateral signal-based measures-coefficient of variance, cross-correlation with anteroposterior accelerations, and mean acceleration-ranked as the top 3 features. The classification accuracy is promising, given research on probabilistic models of falls indicates accuracies ≥80% are challenging to achieve. The results suggest accelerometer-based measures captured during walking are potentially useful in screening older women for fall risk. We are applying algorithms developed in this paper on an OPACH dataset of 5000 women with a 1-year prospective falls log and week-long, free-living accelerometer data.

Research paper thumbnail of Evaluation of Machine Learning Models for Classifying Upper Extremity Exercises Using Inertial Measurement Unit-Based Kinematic Data

IEEE Journal of Biomedical and Health Informatics, 2020

The amount of home-based exercise prescribed by a physical therapist is difficult to monitor. How... more The amount of home-based exercise prescribed by a physical therapist is difficult to monitor. However, the integration of wearable inertial measurement unit (IMU) devices can aid in monitoring home exercise by analyzing exercise biomechanics. The objective of this study is to evaluate machine learning models for classifying nine different upper extremity exercises, based upon kinematic data captured from an IMU-based device. Fifty participants performed one compound and eight isolation exercises with their right arm. Each exercise was performed ten times for a total of 4500 trials. Joint angles were calculated using IMUs that were placed on the hand, forearm, upper arm, and torso. Various machine learning models were developed with different algorithms and train-test splits. Random forest models with flattened kinematic data as a feature had the greatest accuracy (98.6%). Using triaxial joint range of motion as the feature set resulted in decreased accuracy (91.9%) with faster speed...

Research paper thumbnail of Design of a Low-Cost, Wearable Device for Kinematic Analysis in Physical Therapy Settings

Methods of Information in Medicine

Unsupervised home exercise is a major component of physical therapy (PT). This study proposes an ... more Unsupervised home exercise is a major component of physical therapy (PT). This study proposes an inexpensive, inertial measurement unit-based wearable device to capture kinematic data to facilitate exercise. However, conveying and interpreting kinematic data to non-experts poses a challenge due to the complexity and background knowledge required that most patients lack. Objectives The objectives of this study were to identify key user interface and user experience features that would likely improve device adoption and assess participant receptiveness toward the device. Methods Fifty participants were recruited to perform nine upper extremity exercises while wearing the device. Prior to exercise, participants completed an orientation of the device, which included examples of software graphics with exercise data. Surveys that measured receptiveness toward the device, software graphics, and ergonomics were given before and after exercise. Results Participants were highly receptive to t...

Research paper thumbnail of Classifying Upper Extremity Exercises Using Biomechanics Captured with an Inertial Measurement Unit-based Device

Medicine & Science in Sports & Exercise

Research paper thumbnail of Accelerometer-based predictive models of fall risk in older women: a pilot study

npj Digital Medicine, Jul 11, 2018

Current clinical methods of screening older adults for fall risk have difficulties. We analyzed d... more Current clinical methods of screening older adults for fall risk have difficulties. We analyzed data on 67 women (mean age = 77.5 years) who participated in the Objective Physical Activity and Cardiovascular Health (OPACH) study within the Women's Health Initiative and in an accelerometer calibration substudy. Participants completed the short physical performance battery (SPPB), questions about falls in the past year, and a timed 400-m walk while wearing a hip triaxial accelerometer (30 Hz). Women with SPPB ≤ 9 and 1+reported falls (n = 19) were grouped as high fall risk; women with SPPB = 10-12 and 0 reported falls (n = 48) were grouped as low fall risk. Random Forests were trained to classify women into these groups, based upon traditional measures of gait and/or signal-based features extracted from accelerometer data. Eleven models investigated combined feature effects on classification accuracy, using 10-fold cross-validation. The models had an average 73.7% accuracy, 81.1% precision, and 0.706 AUC. The best performing model including triaxial data, cross-correlations, and traditional measures of gait had 78.9% accuracy, 84.4% precision, and 0.846 AUC. Mediolateral signal-based measures-coefficient of variance, cross-correlation with anteroposterior accelerations, and mean acceleration-ranked as the top 3 features. The classification accuracy is promising, given research on probabilistic models of falls indicates accuracies ≥80% are challenging to achieve. The results suggest accelerometer-based measures captured during walking are potentially useful in screening older women for fall risk. We are applying algorithms developed in this paper on an OPACH dataset of 5000 women with a 1-year prospective falls log and week-long, free-living accelerometer data.

Research paper thumbnail of Accelerometer-based predictive models of fall risk in older women: a pilot study

npj Digital Medicine, Jul 11, 2018

Current clinical methods of screening older adults for fall risk have difficulties. We analyzed d... more Current clinical methods of screening older adults for fall risk have difficulties. We analyzed data on 67 women (mean age = 77.5 years) who participated in the Objective Physical Activity and Cardiovascular Health (OPACH) study within the Women's Health Initiative and in an accelerometer calibration substudy. Participants completed the short physical performance battery (SPPB), questions about falls in the past year, and a timed 400-m walk while wearing a hip triaxial accelerometer (30 Hz). Women with SPPB ≤ 9 and 1+reported falls (n = 19) were grouped as high fall risk; women with SPPB = 10-12 and 0 reported falls (n = 48) were grouped as low fall risk. Random Forests were trained to classify women into these groups, based upon traditional measures of gait and/or signal-based features extracted from accelerometer data. Eleven models investigated combined feature effects on classification accuracy, using 10-fold cross-validation. The models had an average 73.7% accuracy, 81.1% precision, and 0.706 AUC. The best performing model including triaxial data, cross-correlations, and traditional measures of gait had 78.9% accuracy, 84.4% precision, and 0.846 AUC. Mediolateral signal-based measures-coefficient of variance, cross-correlation with anteroposterior accelerations, and mean acceleration-ranked as the top 3 features. The classification accuracy is promising, given research on probabilistic models of falls indicates accuracies ≥80% are challenging to achieve. The results suggest accelerometer-based measures captured during walking are potentially useful in screening older women for fall risk. We are applying algorithms developed in this paper on an OPACH dataset of 5000 women with a 1-year prospective falls log and week-long, free-living accelerometer data.