Myeong-Eun Jegal - Academia.edu (original) (raw)

Uploads

Papers by Myeong-Eun Jegal

Research paper thumbnail of Differential virulence of infectious hematopoietic necrosis virus (IHNV) isolated from salmonid fish in Gangwon Province, Korea

Fish & Shellfish Immunology, 2021

The present study investigated the virulence and expression of innate immunity genes in isolates ... more The present study investigated the virulence and expression of innate immunity genes in isolates of infectious hematopoietic necrosis virus (IHNV) in Gangwon province, South Korea, by challenging rainbow trout, Atlantic salmon, and coho salmon. Eight IHNV isolates were used to infect RTG-2 cells for viral replication using plaque assays. Three isolates with the highest replication rates, the RtPc0314g and RtPc0314c isolates of the JRt-Shizuoka type and the RtPc0816g isolate of the JRt-Nagano type, were experimentally infected into the fish. In rainbow trout, both RtPc0314c and RtPc0314g isolates showed 100% cumulative mortality while the RtPc0816g isolate showed 60% cumulative mortality for 14 days. In contrast, all three isolates showed <60% cumulative mortality in Atlantic salmon and coho salmon. The expression of G genes in the kidney was higher than that in the spleen-infected fish, with the highest expression observed in the kidneys of rainbow trout. The relative expression levels of innate immunity genes were higher in rainbow trout than in Atlantic salmon and coho salmon. The expression level of immunoglobulin M increased until day 7, and the expression of type I interferon was higher in the spleen than in other tissues. The expression of Mx-1 was higher in the kidney and liver than other tissues. These results indicate that IHNV isolates from Gangwon province show host-specific virulence in rainbow trout and that their virulence and replication were higher in JRt-Shizuoka type than in JRt-Nagano type isolates.

Research paper thumbnail of Comparison of the Pathogenicity of Infectious Hematopoietic Necrosis Virus Genotypes Isolated from Rainbow Trout in Gangwon Province

Journal of Life Sciences, 2021

Research paper thumbnail of Mitochondrial Dysfunction and Cancer

Journal of Life Science, 2019

Research paper thumbnail of Cancer Stem-Like Phenotype of Mitochondria Dysfunctional Hep3B Hepatocellular Carcinoma Cell Line

Cells, 2021

Mitochondria are major organelles that play various roles in cells, and mitochondrial dysfunction... more Mitochondria are major organelles that play various roles in cells, and mitochondrial dysfunction is the main cause of numerous diseases. Mitochondrial dysfunction also occurs in many cancer cells, and these changes are known to affect malignancy. The mitochondria of normal embryonic stem cells (ESCs) exist in an undifferentiated state and do not function properly. We hypothesized that mitochondrial dysfunction in cancer cells caused by the depletion of mitochondrial DNA might be similar to the mitochondrial state of ESCs. We generated mitochondria dysfunctional (ρ0) cells from the Hep3B hepatocellular carcinoma cell line and tested whether these ρ0 cells show cancer stem-like properties, such as self-renewal, chemotherapy resistance, and angiogenesis. Compared with Hep3B cells, the characteristics of each cancer stem-like cell were increased in Hep3B/ρ0 cells. The Hep3B/ρ0 cells formed a continuous and large sphere from a single cell. Additionally, the Hep3B/ρ0 cells showed resista...

Research paper thumbnail of C-terminal truncated HBx reduces doxorubicin cytotoxicity via ABCB1 upregulation in Huh-7 hepatocellular carcinoma cells

BMB Reports, 2019

Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocell... more Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocellular carcinoma (HCC). Its pathogenic activities in HCC include interference with several signaling pathways associated with cell proliferation and apoptosis. Mutant C-terminal-truncated HBx isoforms are frequently found in human HCC and have been shown to enhance proliferation and invasiveness leading to HCC malignancy. We investigated the molecular mechanism of the reduced doxorubicin cytotoxicity by C-terminal truncated HBx. Cells transfected with C-terminal truncated HBx exhibited reduced cytotoxicity to doxorubicin compared to those transfected with full-length HBx. The doxorubicin resistance of cells expressing C-terminal truncated HBx correlated with upregulation of the ATP binding cassette subfamily B member 1(ABCB1) transporter, resulting in the enhanced efflux of doxorubicin. Inhibiting the activity of ABCB1 and silencing ABCB1 expression by small interfering ribonucleic acid (siRNA) increased the cytotoxicity of doxorubicin. These results indicate that elevated ABCB1 expression induced by C-terminal truncation of HBx was responsible for doxorubicin resistance in HCC. Hence, co-treatment with an ABCB1 inhibitor and an anticancer agent may be effective for the treatment of patients with liver cancer containing the C-terminal truncated HBx. [BMB Reports 2019; 52(5): 330-335]

Research paper thumbnail of Mitochondrial dysfunction suppresses p53 expression via calcium-mediated nuclear factor-kB signaling in HCT116 human colorectal carcinoma cells

BMB reports, Jan 27, 2018

Mitochondrial DNA (mtDNA) mutations are often observed in various cancer types. Although the corr... more Mitochondrial DNA (mtDNA) mutations are often observed in various cancer types. Although the correlation between mitochondrial dysfunction and cancer malignancy has been demonstrated by several studies, further research is required to elucidate the molecular mechanisms underlying accelerated tumor development and progression due to mitochondrial mutations. We generated an mtDNA-depleted cell line, ρ0, via long-term ethidium bromide treatment to define the molecular mechanisms of tumor malignancy induced by mitochondrial dysfunction. Mitochondrial dysfunction in ρ0 cells reduced drug-induced cell death and decreased the expression of pro-apoptotic proteins including p53. The p53 expression was reduced by activation of nuclear factor-κB that depended on elevated levels of free calcium in HCT116/ρ0 cells. Overall, these data provide a novel mechanism for tumor development and drug resistance due to mitochondrial dysfunction.

Research paper thumbnail of Differential virulence of infectious hematopoietic necrosis virus (IHNV) isolated from salmonid fish in Gangwon Province, Korea

Fish & Shellfish Immunology, 2021

The present study investigated the virulence and expression of innate immunity genes in isolates ... more The present study investigated the virulence and expression of innate immunity genes in isolates of infectious hematopoietic necrosis virus (IHNV) in Gangwon province, South Korea, by challenging rainbow trout, Atlantic salmon, and coho salmon. Eight IHNV isolates were used to infect RTG-2 cells for viral replication using plaque assays. Three isolates with the highest replication rates, the RtPc0314g and RtPc0314c isolates of the JRt-Shizuoka type and the RtPc0816g isolate of the JRt-Nagano type, were experimentally infected into the fish. In rainbow trout, both RtPc0314c and RtPc0314g isolates showed 100% cumulative mortality while the RtPc0816g isolate showed 60% cumulative mortality for 14 days. In contrast, all three isolates showed <60% cumulative mortality in Atlantic salmon and coho salmon. The expression of G genes in the kidney was higher than that in the spleen-infected fish, with the highest expression observed in the kidneys of rainbow trout. The relative expression levels of innate immunity genes were higher in rainbow trout than in Atlantic salmon and coho salmon. The expression level of immunoglobulin M increased until day 7, and the expression of type I interferon was higher in the spleen than in other tissues. The expression of Mx-1 was higher in the kidney and liver than other tissues. These results indicate that IHNV isolates from Gangwon province show host-specific virulence in rainbow trout and that their virulence and replication were higher in JRt-Shizuoka type than in JRt-Nagano type isolates.

Research paper thumbnail of Comparison of the Pathogenicity of Infectious Hematopoietic Necrosis Virus Genotypes Isolated from Rainbow Trout in Gangwon Province

Journal of Life Sciences, 2021

Research paper thumbnail of Mitochondrial Dysfunction and Cancer

Journal of Life Science, 2019

Research paper thumbnail of Cancer Stem-Like Phenotype of Mitochondria Dysfunctional Hep3B Hepatocellular Carcinoma Cell Line

Cells, 2021

Mitochondria are major organelles that play various roles in cells, and mitochondrial dysfunction... more Mitochondria are major organelles that play various roles in cells, and mitochondrial dysfunction is the main cause of numerous diseases. Mitochondrial dysfunction also occurs in many cancer cells, and these changes are known to affect malignancy. The mitochondria of normal embryonic stem cells (ESCs) exist in an undifferentiated state and do not function properly. We hypothesized that mitochondrial dysfunction in cancer cells caused by the depletion of mitochondrial DNA might be similar to the mitochondrial state of ESCs. We generated mitochondria dysfunctional (ρ0) cells from the Hep3B hepatocellular carcinoma cell line and tested whether these ρ0 cells show cancer stem-like properties, such as self-renewal, chemotherapy resistance, and angiogenesis. Compared with Hep3B cells, the characteristics of each cancer stem-like cell were increased in Hep3B/ρ0 cells. The Hep3B/ρ0 cells formed a continuous and large sphere from a single cell. Additionally, the Hep3B/ρ0 cells showed resista...

Research paper thumbnail of C-terminal truncated HBx reduces doxorubicin cytotoxicity via ABCB1 upregulation in Huh-7 hepatocellular carcinoma cells

BMB Reports, 2019

Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocell... more Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocellular carcinoma (HCC). Its pathogenic activities in HCC include interference with several signaling pathways associated with cell proliferation and apoptosis. Mutant C-terminal-truncated HBx isoforms are frequently found in human HCC and have been shown to enhance proliferation and invasiveness leading to HCC malignancy. We investigated the molecular mechanism of the reduced doxorubicin cytotoxicity by C-terminal truncated HBx. Cells transfected with C-terminal truncated HBx exhibited reduced cytotoxicity to doxorubicin compared to those transfected with full-length HBx. The doxorubicin resistance of cells expressing C-terminal truncated HBx correlated with upregulation of the ATP binding cassette subfamily B member 1(ABCB1) transporter, resulting in the enhanced efflux of doxorubicin. Inhibiting the activity of ABCB1 and silencing ABCB1 expression by small interfering ribonucleic acid (siRNA) increased the cytotoxicity of doxorubicin. These results indicate that elevated ABCB1 expression induced by C-terminal truncation of HBx was responsible for doxorubicin resistance in HCC. Hence, co-treatment with an ABCB1 inhibitor and an anticancer agent may be effective for the treatment of patients with liver cancer containing the C-terminal truncated HBx. [BMB Reports 2019; 52(5): 330-335]

Research paper thumbnail of Mitochondrial dysfunction suppresses p53 expression via calcium-mediated nuclear factor-kB signaling in HCT116 human colorectal carcinoma cells

BMB reports, Jan 27, 2018

Mitochondrial DNA (mtDNA) mutations are often observed in various cancer types. Although the corr... more Mitochondrial DNA (mtDNA) mutations are often observed in various cancer types. Although the correlation between mitochondrial dysfunction and cancer malignancy has been demonstrated by several studies, further research is required to elucidate the molecular mechanisms underlying accelerated tumor development and progression due to mitochondrial mutations. We generated an mtDNA-depleted cell line, ρ0, via long-term ethidium bromide treatment to define the molecular mechanisms of tumor malignancy induced by mitochondrial dysfunction. Mitochondrial dysfunction in ρ0 cells reduced drug-induced cell death and decreased the expression of pro-apoptotic proteins including p53. The p53 expression was reduced by activation of nuclear factor-κB that depended on elevated levels of free calcium in HCT116/ρ0 cells. Overall, these data provide a novel mechanism for tumor development and drug resistance due to mitochondrial dysfunction.